ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Representación De Datos


Enviado por   •  16 de Noviembre de 2014  •  4.831 Palabras (20 Páginas)  •  230 Visitas

Página 1 de 20

SISTEMAS DE COORDENADAS CARTESIANAS

Las coordenadas cartesianas o coordenadas rectangulares son un tipo de coordenadas usadas en espacios euclídeos, para la representación gráfica, en geometría analítica , o del movimiento o posición en física, caracterizadas porque usa como referencia ejes ortogonales entre sí que se cortan en un punto origen. Las coordenadas cartesianas se definen así como la distancia al origen de las proyecciones ortogonales de un punto dado sobre cada uno de los ejes. La denominación de 'cartesiano' se introdujo en honor de René Descartes, quien lo utilizó de manera formal por primera vez.

Si el sistema en si es un sistema bidimensional, se denomina plano cartesiano. El punto de corte de las rectas se hace coincidir con el punto cero de las rectas y se conoce como origen del sistema. Al eje horizontal o de las abscisas se le asigna los números enteros de las equis ("x"); y al eje vertical o de las ordenadas se le asignan los números enteros de las yes ("y"). Al cortarse las dos rectas dividen al plano en cuatro regiones, estas zonas se conocen como cuadrantes:

• Primer cuadrante "I": Región superior derecha

• Segundo cuadrante "II": Región superior izquierda

• Tercer cuadrante "III": Región inferior izquierda

• Cuarto cuadrante "IV": Región inferior derecha

El plano cartesiano se utiliza para asignarle una ubicación a cualquier punto en el plano. En la gráfica se indica el punto +2 en las abscisas y +3 en las ordenadas. El conjunto (2 , 3) se denomina "par ordenado" y del mismo modo se pueden ubicar otros puntos.

Las coordenadas cartesianas se usaron un ejemplo para definir un sistema cartesiano o sistema de referencia respecto ya sea a un solo eje (línea recta), respecto a dos ejes (un plano) o respecto a tres ejes (en el espacio), perpendiculares entre sí (plano y espacio), que se cortan en un punto llamado origen de coordenadas. En el plano, las coordenadas cartesianas se denominan abscisa y ordenada. La abscisa es la coordenada horizontal y se representa habitualmente por la letra x, mientras que la ordenada es la coordenada vertical y se representa por la y.

Historia

Se denominan coordenadas cartesianas en honor a René Descartes (1596-1650), el célebre filósofo y matemático francés que quiso fundamentar su pensamiento filosófico en el método de tomar un «punto de partida» evidente sobre el que edificaría todo el conocimiento.

Como creador de la geometría analítica, Descartes también comenzó tomando un «punto de partida» en esta disciplina, el sistema de referencia cartesiano, para poder representar la geometría plana, que usa sólo dos rectas perpendiculares entre sí que se cortan en un punto denominado «origen de coordenadas»

Recta Euclídea

Un punto cualquiera de una recta puede asociarse y representarse con un número real, positivo si está situado a la derecha de un punto O, y negativo si está a la izquierda. Dicho punto se llama origen de coordenadas O (letra O) y se asocia al valor 0 (cero).

Corresponde a la dimensión uno, que se representa con el eje X, en el cual se define un origen de coordenadas, simbolizado con la letra O (O de origen) y un vector unitario en la dirección positiva de las x: .

Este sistema de coordenadas es un espacio vectorial de dimensión uno, y se le pueden aplicar todas las operaciones correspondientes a espacios vectoriales. También se le llama recta real.

Un punto:

También puede representarse:

La distancia entre dos puntos A y B es:

Plano euclídeo

Con un sistema de referencia conformado por dos rectas perpendiculares que se cortan en el origen, cada punto del plano puede "nombrarse" mediante dos números: (x, y), que son las coordenadas del punto, llamadas abscisa y ordenada, respectivamente, que son las distancias ortogonales de dicho punto respecto a los ejes cartesianos.

.

La ecuación del eje x es y = 0, y la del eje y es x = 0, rectasque se cortan en el origen O, cuyas coordenadas son, obviamente, (0, 0).

Se denomina también eje de las abscisas al eje x, y eje de las ordenadas al eje y. Los ejes dividen el espacio en cuatro cuadrantes en los que los signos de las coordenadas alternan de positivo a negativo (por ejemplo, las dos coordenadas del punto A serán positivas, mientras que las del punto B serán ambas negativas).

Las coordenadas de un punto cualquiera vendrán dadas por las proyecciones del segmento entre el origen y el punto sobre cada uno de los ejes.

Sobre cada uno de los ejes se definen vectores unitarios (iy j) como aquellos paralelos a los ejes y de módulo (longitud) la unidad. En forma vectorial, la posición del punto A se define respecto del origen con las componentes del vector OA.

La posición del punto A será:

Nótese que la lista de coordenadas puede expresar tanto la posición de un punto como las componentes de un vector en notación matricial.

La distancia entre dos puntos cualesquiera vendrá dada por la expresión:

Aplicación del teorema de Pitágoras al triángulo rectángulo ABC.

Un vector cualquiera AB se definirá restando, coordenada a coordenada, las del punto de origen de las del punto de destino:

Evidentemente, el módulo del vector AB será la distancia dAB entre los puntos A y B antes calculada.

Espacio euclídeo

Si tenemos un sistema de referencia formado por tres rectas perpendiculares entre sí (X, Y, Z), que se cortan en el origen (0, 0, 0), cada punto del espacio puede nombrarse mediante tres números: (x, y, z), denominados coordenadas del punto, que son las distancias ortogonales a los tres planos principales: los que contienen las parejas de ejes YZ, XZ e YX, respectivamente.

Los planos de referencia XY (z = 0); XZ (y = 0); e YZ (x = 0) dividen el espacio en ocho cuadrantes en los que, como en el caso anterior, los signos de las coordenadas pueden ser positivos o negativos.

La generalización de las relaciones anteriores al caso espacial es inmediata considerando que ahora es necesaria una tercera coordenada (z) para definir la posición del punto.

Las coordenadas del punto A serán:

Y el B:

La distancia entre los puntos A y B será:

El segmento AB será:

Cambio del sistema de coordenadas

Tanto en el caso plano como en el caso espacial pueden considerarse tres transformaciones elementales: traslación del origen, rotación alrededor de un eje y escalado.

Traslación del

...

Descargar como (para miembros actualizados) txt (30 Kb)
Leer 19 páginas más »
Disponible sólo en Clubensayos.com