Tablas Tautologicas
Enviado por xjulioxsxe • 4 de Abril de 2013 • 348 Palabras (2 Páginas) • 783 Visitas
Tautologías Fundamentales
p ∨ ¬p Ley del medio excluido
¬ (p ^ ¬p) Ley de no contradicción
¬(¬p) ↔ p Doble Negación
¬(p ∨ q) ↔ ¬p ^ ¬q Ley 1 de De Morgan
¬(p ^ q) ↔ ¬p ∨ ¬q Ley 2 de De Morgan
((p → q)^p) → q Modus ponendoponens
((p → q)^ ¬ q) → ¬ p Modus tollendotollens
((p ∨ q) ∧ ¬ p) → q Silogismo Disyuntivo
((p → q) ∧ (q → r)) → (p → r) Silogismo Hipotético
(p → q) ↔ (¬ p ∨ q) Condicional como cláusula
((p → q) ↔ (¬ q → ¬ p) Contrapositiva
1. Tautología - Epistemowikia
campusvirtual.unex.es/cala/epistemowikia/index.php?title=TautologíaEn caché - Similares
Las tautologías son muy comunes, y algunas de ellas muy importantes, tanto, que constituyen leyes o principios lógicos. La validez lógica es justamente el que ...
Definición - Principio de identidad - Principio del tercio excluido
Las tautologías más conocidas y más usadas en demostraciones matemáticas son las siguientes:
1.- Doble negación.
a). ¬¬p ⇔ p
2.- Leyes conmutativas.
a). (p∨q)⇔(q∨p)
b). (p∧q)⇔(q∧p)
c). (p↔q)⇔(q↔p)
3.- Leyes asociativas.
a). [(p∨q)∨r]⇔[p∨(q∨r)]
b). [(p∨q)∨r]⇔[p∨(q∨r)]
4.- Leyes distributivas.
a). [p∨(q∧r)]⇔[(p∨q)∧(p∨r)]
b). [p∧(q∨r)]⇔[(p∧q)∨(p∧r)]
5.- Leyes de idempotencia.
a). (p∨p)⇔p
b). (p∧p)⇔p
6.- Leyes de Morgan.
a). ¬(p∨q)⇔(¬p∧¬q)
b). ¬(p∧q)⇔(¬p∨¬q)
c). (p∨q)⇔¬(¬p∧¬q)
d). (p∧q)⇔¬(¬p∨¬q)
7.- Contrapositiva.
a). (p→q)⇔(q'→p')
8.- Implicación.
a). (p→q)⇔(¬p∨q)
b). (p→q)⇔¬(p∧¬q)
c). (p∨q)⇔(¬p→q)
d). (p∧q)⇔¬(p→¬q)
e). [(p→r)∧(q→r)]⇔[(p∧q)→r]
f). [(p→q)∧(p→r)]⇔[p→(q∧r)]
9.- Equivalencia
a). (p↔q)⇔[(p→q)∧(q→p)]
10.- Adición.
a). p⇒(p∨q)
11.- Simplificación.
a). (p∧q)⇒p
12.- Absurdo.
a). (p→0)⇒¬p
13.- Modus ponens.
a). [p∧(p→q)]⇒q
14.- Modus tollens.
a). [(p→q)∧¬q]⇒¬p
15.- Transitividad del ↔
a). [(p↔q)∧(q↔r)]⇒(p↔r)
16.- Transitividad del →
a). [(p→q)∧(q→r)]Þ(p→r)
17.- Mas implicaciones lógicas.
a). (p→q)⇒[(p∨r)→(q∨s)]
b). (p→q)⇒[(p∧r)→(q∧s)]
c). (p→q)⇒[(q→r)→(p→r)]
18.- Dilemas constructivos.
a). [(p→q)∧(r→s)]⇒[(p∨r)→(q∨s)]
...