ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Trabajo Realizado Por Una Furza Constante


Enviado por   •  1 de Octubre de 2014  •  547 Palabras (3 Páginas)  •  324 Visitas

Página 1 de 3

TRABAJO de FUERZAS VARIABLES

Voy a presentar un modo de calcular el trabajo de fuerzas variables (como la fuerza elástica). Empecemos por presentar un tipo de gráfico bastante útil: nos muestra el valor de una fuerza, Fx, cualquiera en función de la posición -cambiante-, x, que ocupa un cuerpo.

Se trata de un gráfico, como se ve, de fuerza en función de la posición. En este caso en particular se trata de una fuerza constante, tiene siempre el mismo valor, y el subíndice x indica que la fuerza tiene la misma dirección que la posición (y del desplazamiento).

Tomemos dos posiciones cualesquiera y llamémoslas x1 y x2. Y calculemos el "área encerrada baja la curva" entre ese par de posiciones.

Acá tenés el área que vamos a calcular. Como se trata de un rectángulo es sencillo: lado por lado, base por altura. La base es igual a x2 — x1, y la altura es F.

Ese producto no es otra cosa que el trabajo de la fuerzaFx en el desplazamiento (x2 — x1).

WF = Fx . (x2 — x1) = Fx . Δx

De modo que el área encerrada bajo la curva de este gráfico es igual al trabajo de la fuerza. No se trata, claro, de un área geométrica. Es un área que representa una magnitud física, en este caso un trabajo.

No se mide en unidades de superficie (m², cm², o cualquier otra). Se mide en unidades de trabajo, por ejemplo el joule, J.

Aceptado esto, podemos preguntarnos si con las fuerzas variables (o sea, que cambia de valor en cada posición) pasa algo equivalente. La manera de obrar es la siguiente: fraccionemos el desplazamiento en pequeños segmentos.

El trabajo de la fuerza variable en el desplazamiento (x2 — x1) se aproxima mucho a la suma de los trabajos parciales representado por cada uno de los rectangulitos.

Pero esa aproximación se puede aumentar tanto como uno quiera haciendo cada vez más pequeños los segmentos de desplazamiento que después tendremos que sumar.

El análisis matemático permite hacer esas sumas de segmentos tan finitos que son invisibles. La notación es ésta:

W = ∫ Fx dx

Que se lee así: el trabajo es igual a la suma integral de todos los productos entre el valor de la fuerza y el pequeño segmento de desplazamiento durante el que actúa la fuerza.

O un poco más crípticamente: el trabajo es igual a la integral de la fuerza por el diferencial del desplazamiento.

En los cursos iniciales de Física no se suele apelar a las habilidades ni a los conocimientos de análisis matemático de los estudiantes, y No me salen no lo hace. Pero sí a las habilidades geométricas, que son mucho más básicas.

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com