ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Unidad 3 I.O


Enviado por   •  29 de Junio de 2014  •  1.108 Palabras (5 Páginas)  •  303 Visitas

Página 1 de 5

UNIDAD 3.- ASIGNACIÓN Y TRANSPORTE.

3.1 Método de Esquina Noroeste.

El método de la esquina Noroeste es un algoritmo heurístico capaz de solucionar problemas de transporte o distribución mediante la consecución de una solución básica inicial que satisfaga todas las restricciones existentes sin que esto implique que se alcance el costo óptimo total.

Este método tiene como ventaja frente a sus similares la rapidez de su ejecución, y es utilizado con mayor frecuencia en ejercicios donde el número de fuentes y destinos sea muy elevado.

• ALGORITMO DE RESOLUCIÓN DE LA ESQUINA NOROESTE

Se parte por diseñar en forma matricial el problema, es decir, filas que representen fuentes y columnas que representen destinos, luego el algoritmo debe de iniciar en la celda, ruta o esquina Noroeste de la tabla (esquina superior izquierda).

http://ingenierosindustriales.jimdo.com/herramientas-para-el-ingeniero-industrial/investigaci%C3%B3n-de-operaciones/m%C3%A9todo-de-la-esquina-noroeste/

3.2 MÉTODO DE COSTO MÍNIMO.

El método del costo mínimo o de los mínimos costos es un algoritmo desarrollado con el objetivo de resolver problemas de transporte o distribución, arrojando mejores resultados que métodos como el de la esquina noroeste, dado que se enfoca en las rutas que presentan menores costos. El diagrama de flujo de este algoritmo es mucho más sencillo que los anteriores dado que se trata simplemente de la asignación de la mayor cantidad de unidades posibles (sujeta a las restricciones de oferta y/o demanda) a la celda menos costosa de toda la matriz hasta finalizar el método.

• ALGORITMO DE RESOLUCIÓN DEL COSTO MÍNIMO

PASO 1:

De la matriz se elige la ruta (celda) menos costosa (en caso de un empate, este se rompe arbitrariamente) y se le asigna la mayor cantidad de unidades posible, cantidad que se ve restringida ya sea por las restricciones de oferta o de demanda. En este mismo paso se procede a ajustar la oferta y demanda de la fila y columna afectada, restándole la cantidad asignada a la celda.

PASO 2:

En este paso se procede a eliminar la fila o destino cuya oferta o demanda sea 0 después del "Paso 1", si dado el caso ambas son cero arbitrariamente se elige cual eliminar y la restante se deja con demanda u oferta cero (0) según sea el caso.

PASO 3:

Una vez en este paso existen dos posibilidades, la primera que quede un solo renglón o columna, si este es el caso se ha llegado al final el método, "detenerse".

La segunda es que quede más de un renglón o columna, si este es el caso iniciar nuevamente el "Paso 1".

Ejemplo:

Encuentre la solución básica inicial del ejemplo 1 utilizando el método del costo mínimo.

http://www.itlalaguna.edu.mx/Academico/Carreras/industrial/invoperaciones1/U5C.HTML

http://ingenierosindustriales.jimdo.com/herramientas-para-el-ingeniero-industrial/investigaci%C3%B3n-de-operaciones/m%C3%A9todo-del-costo-m%C3%ADnimo/

3.3 MÉTODO DE APROXIMACIÓN DE VOGEL.

El método de aproximación de Vogel es un método heurístico de resolución de problemas de transporte capaz de alcanzar una solución básica no artificial de inicio, este modelo requiere de la realización de un número generalmente mayor de iteraciones que los demás métodos heurísticos existentes con este fin, sin embargo produce mejores resultados iniciales que los mismos.

• ALGORITMO DE RESOLUCIÓN DE VOGEL

El método consiste en la realización de un algoritmo que consta de 3 pasos fundamentales y 1 más que asegura el ciclo hasta la culminación del método.

PASO 1

Determinar para cada fila y columna una medida de penalización restando los dos costos menores en filas y columnas.

PASO 2

Escoger la fila o columna con la mayor penalización, es decir que de la resta realizada en el "Paso 1" se debe escoger el número mayor. En caso

...

Descargar como (para miembros actualizados) txt (8 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com