¿A cuál o cuáles de los camellos apostarías para ganar la mayor cantidad de veces las carreras?
Enviado por alciwacko • 27 de Junio de 2016 • Apuntes • 1.530 Palabras (7 Páginas) • 681 Visitas
PLANTEAMIENTO DEL PROBLEMA :
¿A cuál o cuáles de los camellos apostarías para ganar la mayor cantidad de veces las carreras?. Justifica tu elección.
OBJETIVOS:
Que los alumnos logren:
- Conocer el concepto y la finalidad de los “procesos estocásticos”.
- Conocer los distintos campos de aplicación de esta teoría de la probabilidad.
- Conocer el caso particular de las medidas de tendencia central.
- Aprender a identificar casos prácticos.
- Saber realizar análisis descriptivos de series de observaciones reales cuyo análisis estadístico y modelación requiere el empleo de esta teoría de la probabilidad.
- Trabajar en forma intuitiva la idea de variación alrededor de las medidas de tendencia central y la idea de probabilidad con los conceptos que se relaciona.
- Desarrollar la idea de que los valores centrales (6, 7, 8 y 9) tienen mayor probabilidad de ganar que los valores en los extremos (1, 2, 3, 4, 5, 10, 11 y 12).
- Manipular el simulador “carrera de camellos” para que los alumnos puedan observar como es la tendencia de las frecuencias relativas hacia las probabilidades esperadas.
FUNDAMENTACIÓN:
Esta propuesta de enseñanza está basada en la metodología de proyectos introduciendo en la clase por un lado una filosofía exploratoria y participativa y por el otro la integración de estadística y el contexto, ya que los datos tienen un significado y tienen que ser interpretados, esto permite abordar un proceso de enseñanza y aprendizaje en el que los alumnos deben plantear ideas, estrategias, conjeturas que luego deberán comprobarse a través de la evidencia de los resultados que arroja el experimento aleatorio de tirar dos dados. Se busca cambiar el modo tradicional de enseñar Estadística y probabilidad en el que se presentan actividades totalmente estructuradas y descontextualizadas, donde el alumno solo acata la orden y utiliza un procedimiento puramente algorítmico de cálculo de medidas de tendencia central y de dispersión, aprendiendo conceptos y procedimientos sin sentido y significado.
Este proyecto busca promover actividades que permiten experimentar la idea de variación de una manera intuitiva, solo una vez que los alumnos comprendan esta idea podríamos comenzar a formalizarla a partir de representaciones de la información en tablas de frecuencias y gráficos de barras, resumiendo los datos en un espacio muestral de las secuencias de las tiradas de los dos lados y calculando las medidas de tendencia central y de dispersión. A partir de tercer año y también en cuarto año del secundario, en estas etapas el conocimiento abstracto se está desarrollando en los alumnos y se podría construir las ideas de probabilidad utilizando como recurso un dispositivo aleatorio como un simulador llamado “carrera de camellos”que nos sirve para trabajar en forma intuitiva la idea de “variabilidad” de los datos alrededor del valor central o valor esperado, debemos primero generar la idea de centro y variación respecto al centro a partir de los gráficos (por eso la importancia del gráfico de barras que presenta este simulador), y las preguntas que se hacen como ser los camellos que corren por el centro se mueven más que otros. ¿Por qué? ¿Cuales son los camellos que más se mueven en las diferentes partidas? ¿Por qué el camello 1 no se mueve en ninguna partida? (caso: imposible, probabilidad: 0). Esto, junto con otras formas de representar las secuencias de las tiradas de los 2 dados que está detrás del juego, ayudará a construir los conceptos estocásticos a través de los razonamientos estadísticos dándole un sentido estadístico a la tarea que se realiza.
CONTENIDOS:
Contenidos estocásticos: aleatoriedad, variable aleatoria, espacio muestral y resultados. Suceso. Frecuencia absoluta. Frecuencia relativa. Frecuencia porcentual. Tabla de frecuencias. Probabilidad. Distribución de probabilidad.
FORMA DE TRABAJO:
La suma de los puntos obtenidos al arrojar dos dados es una variable aleatoria cuantitativa discreta:
Podríamos contrastar secuencias reales con secuencias simuladas, se puede trabajar con dados en la clase formando grupos de 2 integrantes. Cada grupo irá anotando las sumas de puntos obtenidos a la hora de arrojar los dos dados.
Una vez finalizada esta etapa se podría clasificar a los resultados en dos grupos, ya que los alumnos están en condiciones de reconocer cuales son los valores que tienen mayor probabilidad de salir y cuáles son pocos probables e incluso imposibles. Aquí se clasificaron los resultados, en un grupo A estarán los números como 6,7,8,9 mientras que en el B estarán los pocos probables y el valor imposible. El docente puede orientar a cada grupo preguntando:¿Cuales son los números que salen más?¿Los del grupo A o B? ¿A los números de que grupo apostarán? Después de esto se les podría pedir a los alumnos realizar una secuencia de tirada de dados, calculando las probabilidades para cada suma de puntos y para cada clase A o B.
A continuación se presenta el simulador “Carrera de camellos”, se comenzará a jugar y se pedirá a los alumnos que anoten los resultados en las distintas partidas armando una tabla de frecuencias a partir del gráfico que está presente en el simulador. Luego de esto se realizará una comparación entre los resultados obtenidos en las tiradas reales y simuladas.Como se le pide a los alumnos que arrojen 10 lanzamientos de los dados reales y si no hay un ganador(A o B) que sigan lanzando hasta obtener uno, como son pocas las tiradas no se define el gráfico con las frecuencias absolutas, por eso se necesita del simulador “carrera de camellos” que si se ve bien el gráfico. Pero este simulador también presenta sus limitaciones si queremos preguntar si se mantiene esta ventaja del jugador A sobre el jugador B en tiradas más grandes como 100, 1000, 3000, 5000, etc. Por eso recurrimos a un simulador complementario en “Azar y probabilidad” (tiradas de dos dados) que me permite mostrar el gráfico para mayor número de lanzamientos.
...