Actividad Aprendizaje Matemáticas
Enviado por carmenpm • 18 de Enero de 2015 • 3.498 Palabras (14 Páginas) • 749 Visitas
Actividades de aprendizaje
Actividad de aprendizaje 1.1.
Plantee una función, que le permita calcular la edad de su padre, en cualquier tiempo, en función de la suya. Defina las variables: dependiente e independiente e identifíquelas en la función planteada. (1 punto).
Una variable que representa los números de entrada para una función se denomina variable independiente. Una variable que representa los números de salida se denomina variable dependiente, pues su valor depende del valor de la variable independiente. Así, la variable dependiente es una función de la variable independiente.
Edad de mi padre al momento de mi nacimiento = 26
y = edad de mi padre (Variable dependiente)
x = mi edad (Variable independiente)
y=x+26
¿Qué son el dominio y rango de una función? Determine el dominio y el rango de las siguientes expresiones e indique si son o no funciones: (1 punto)
En su forma más simple el dominio son todos los valores a los que aplicar una función, y el rango son los valores que resultan. Por lo tanto, el dominio es el conjunto de número de entrada aplicados a la función y el rango es el conjunto de todos los números posibles de salida.
a.- y=-15x-9
Veo que se puede utilizar cualquier número real para x, de manera que el dominio son todos los números reales. El rango lo constituyen todos los números reales. Sí es una función pues a cada valor de x le corresponde uno y sólo un valor de y.
Dominio={-∞<x<+∞}
Rango={-∞<y<+∞}
b.- -11x=4
Despejo la x.
x= -4/11
Dominio={x=-4/11}
Rango={-∞<y<+∞}
Debido a esto, no es una función.
c.- 3y=-7
Despejo y
y=-7/3
Dominio={-∞<x+∞}
Rango={y=-7/3}
Por lo tanto es una función.
d.- 6x+11y=0
Despejo y:
y=-6x/11
Dominio={-∞<x<+∞}
Rango={-∞<y<+∞}
Sí es una función.
Determine cuánto vale la pendiente de las siguientes rectas. (1 punto)
6x=8y+11
Escribo la recta de tal modo que tenga la forma pendiente-intersección
y=mx+b
y=6/8 x-11/8
Así la pendiente es 6/8
3y=-13
y=-13/3
La pendiente es cero.
-5x=9
Halle las ecuaciones de las rectas, escríbalas en la forma general Ax+By+C=0
Pasa por (-8; -1) y tiene m=-3/8
y-y_1=m(x-x_1 )
y+1=-3/8 (x+8)
y+1=-3/8 x-3
y+1+3/8 x+3=0
3/8 x+y+4=0
b.- Pasa por (6 ; 4) y por (-8 ; -3)
y-y_1=(y_2-y_1)/(x_2-x_1 ) (x-x_1 )
y-4=(-3-4)/(-8-6) (x-6)
y-4=(-7)/(-14) (x-6)
y-4=1/2 (x-6)
y-4=1/2 x-3
y-4-1/2 x+3=0
-1/2 x+y-1=0
c.- m = - 1/5 ; intersección con el eje x, a = 9
El punto de referencia es (9, 0), por lo tanto:
y-0=-1/5 (x-9)
y=-1/5 x+9/5
y+1/5 x-9/5=0
1/5 x+y-9/5=0
d.- Pasa por (0 ; 0) y m = 18/11
y-0=18/11 (x-0)
y=18/11 x
-18/11 x+y=0
4. El valor de adquisición de una casa es de $87.500 y se espera que triplique su valor en 4 años. Determine una función lineal, que nos indique el valor de la casa, en cualquier época. (Después de “t” años). (1 punto)
Planteamiento
Valor de adquisición de la casa = $87.500
Valor de la casa al cabo de 4 años=$262.500
Año Valor casa
0 87.500
4 262.500
Aplico la fórmula:
y-87500=(262500-87500)/(4-0) (x-0)
y-87500=43750x
y=43750x+87500
f(t)=43750t+87500
Actividad de aprendizaje 1.2.
1. En la época de navidad se ofertarán 10.000 refrigeradoras al precio de $950 cada unidad y se ofertarán 320 unidades menos, por cada $80 de descenso en el precio. Si el precio “p” y la cantidad “q” están relacionadas linealmente, halle la ecuación de la oferta y grafíquela. (1 punto)
p $ 950,00 $ 870,00
q 10.000 9.680
q-10000=(9680-10000)/(870-950) (p-950)
q-10000=4(p-950)
q=4p-3800+10000
q=4p+6200
2. A $0,6 por kilo de arroz, la oferta diaria es de 450 kilos, mientras que la demanda diaria es de 645 kilos. Si el precio se incrementa a $0,90 el kilo, la oferta diaria aumenta a 750 kilos, mientras que la demanda diaria disminuye a 495 kilos. Determine las ecuaciones de la oferta y de la demanda y halle la cantidad y el precio de equilibrio. (1 punto)
PLANTEAMIENTO
Precio kilo arroz Oferta (kilos) Demanda (kilos)
0,60 450 645
0,90 750 495
ECUACIÓN DE OFERTA
A(0,60;450) B(0,90; 750)
q-450=(450-750)/(0,60-0,90) (p-0,60)
q-450=(-300)/(-0,30) (p-0,60)
q-450=1000(p-0,60)
q=1000p-600+450
q=1000p-150
ECUACIÓN DE DEMANDA
A(0,60;645) B(0,90; 495)
q-645=(645-495)/(0,60-0,90) (p-0,60)
q-645=200/(-0,30) (p-0,60)
q=-2000/3 p-400+645
q=-2000/3 p+155
PUNTO DE EQUILIBRIO
Oferta = Demanda
1000p-150=-2000/3 p+155
1000p(3)-150(3)=-2000(3)/3 p+155(3)
3000p-450=-2000p+465
3000p+2000p=465+450
5000p=915
p=915/5000
p=0,183
q=1000(0,183)-150
q=183-150
q=33
Punto de equilibrio P.E. (0,183; 33)
3. La demanda mensual de zapatas para auto es: q = 1500 - 600p. El costo por mano de obra es de $5 y el de los materiales de $10 por cada unidad, mientras que los costos fijos ascienden a $3.000. ¿Qué precio por unidad deberá fijarse al consumidor con el objeto de que la utilidad sea máxima? Halle la función utilidad en términos de p y grafíquela. (1 punto)
Función demanda Costo Variable Costo Fijo
q = 1500 - 600p 15 3000
U=I-Ct I=p*q Ct=CV+CF
U=Utilidad I=Ingresos Ct=Costo Total
CV=Costo Variable
...