ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

CIRCUITOS MAGNÉTICOS E INDUCTORES


Enviado por   •  15 de Octubre de 2014  •  2.043 Palabras (9 Páginas)  •  199 Visitas

Página 1 de 9

CIRCUITOS MAGNÉTICOS E INDUCTORES

Campo magnético

El campo magnético es una región del espacio en la cual una carga eléctrica puntual de valor que se desplaza a una velocidad , sufre los efectos de una fuerza que es perpendicular y proporcional tanto a la velocidad como al campo. Así, dicha carga percibirá una fuerza descrita con la siguiente igualdad.

Donde F es la fuerza, v es la velocidad y B el campo magnético, también llamado inducción magnética y densidad de flujo eléctrico. (Nótese que tanto F como v y B son magnitudes vectoriales y el producto vectorial es un producto vectorial que tiene como resultante un vector perpendicular tanto a v como a B). El módulo de la fuerza resultante será

La existencia de un campo magnético se pone de relieve gracias a la propiedad localizada en el espacio de orientar un magnetómetro (laminilla de acero imantado que puede girar libremente). La aguja de una brújula, que evidencia la existencia del campo magnético terrestre, puede ser considerada un magnetómetro.

Líneas del Campo Magnético

Cuando los investigadores trazan el flujo tridimensional de un río alrededor del pilar de un puente o del viento alrededor del ala de un aeroplano (ver foto), lo modelizan usando líneas de flujo dinámico, unas líneas que trazan el flujo de las partículas de agua o aire.

Las líneas del campo magnético describen de forma similar la estructura del campo magnético en tres dimensiones. Se definen como sigue. Si en cualquier punto de dicha línea colocamos una aguja de compás ideal, libre para girar en cualquier dirección (diferente a la aguja normal que permanece horizontal --estas agujas existen, vea al final de la página), la aguja siempre apuntará a lo largo de la línea de campo (dibujo inferior).

Las líneas de campo convergen donde la fuerza magnética es mayor y se separan donde es más débil. Por ejemplo, en una barra imantada compacta o "dipolo", las líneas de campo se separan a partir de un polo y convergen en el otro y la fuerza magnética es mayor cerca de los polos donde se reúnen. El comportamiento de las líneas en el campo magnético terrestre es muy similar.

Las líneas de campo fueron introducidas por Michael Faraday, que las denominó "líneas de fuerza". Durante muchos años fueron vistas meramente como una forma de visualizar los campos magnéticos y los ingenieros eléctricos preferían otras formas, más útiles matemáticamente. Sin embargo no era así en el espacio, donde las líneas eran fundamentales para la forma en que se movían los electrones e iones. Estas partículas cargadas eléctricamente tienden a permanecer unidas a las líneas de campo donde se asientan, girando en espiral a su alrededor mientras se deslizan por ellas, como las cuentas de un collar (dibujo inferior).

Debido a esta unión, el comportamiento del gas electrificado ("plasma") en el espacio, un gas de iones y electrones libres, es dictado por la estructura de las líneas de campo: las corrientes eléctricas, por ejemplo, encuentran más fácil fluir a lo largo de estas líneas. El papel de las líneas de campo en un plasma se parece a las vetas de la madera: como la veta es la dirección "fácil" a lo largo de la cual la madera se raja más fácilmente, así la dirección de las líneas de campo es la que prefieren para fluir las partículas, las corrientes eléctricas, el calor y ciertos tipos de ondas.

Densidad de flujo

La inducción magnética o densidad de flujo magnético, cuyo símbolo es B, es el flujo magnético por unidad de área de una sección normal a la dirección del flujo, y en algunos textos modernos recibe el nombre de intensidad de campo magnético, ya que es el campo real.

La unidad de la densidad en el Sistema Internacional de Unidades es el tesla.

Está dado por:

Donde B es la densidad del flujo magnético generado por una carga que se mueve a una velocidad v a una distancia r de la carga, y ur es el vector unitario que une la carga con el punto donde se mide B (el punto r).

O bien:

Donde B es la densidad del flujo magnético generado por un conductor por el cual pasa una corriente I, a una distancia r.

La fórmula de esta definición se llama Ley de Biot-Savart, y es en magnetismo la equivalente a la Ley de Coulomb de la electrostática, pues sirve para calcular las fuerzas que actúan en cargas en movimiento.

El campo inducción, B, o densidad de flujo magnético (los tres nombres son equivalentes) es más fundamental en electromagnetismo que el campo H, ya que es el responsable de las fuerzas en las cargas en movimiento y es, por tanto, el equivalente físico a E.

Permeabilidad Magnética

En física se denomina permeabilidad magnética a la capacidad de una sustancia o medio para atraer y hacer pasar a su través los campos magnéticos, la cual está dada por la relación entre la intensidad de campo magnético existente y la inducción magnética que aparece en el interior de dicho material.

La magnitud así definida, el grado de magnetización de un material en respuesta a un campo magnético, se denomina permeabilidad absoluta y se suele representar por el símbolo μ:

Donde B es la inducción magnética (también llamada densidad de flujo magnético) en el material, y H es intensidad de campo magnético.

La permeabilidad del vacío, conocida también como constante magnética, se representa mediante el símbolo μ0 y se define como:

La permitividad eléctrica - que aparece en la Ley de Coulomb - y la constante magnética del vacío están relacionadas por la fórmula:

Donde c representa velocidad de la luz en el espacio vacío.

Inductores (Bobinas) e Inductancias

Inductancia

La inductancia de un circuito es la relación entre la fuerza electromotriz inducida en él por una corriente variable, y la velocidad de variación de dicha corriente. Los componentes diseñados de modo que presenten adrede un valor de inductancia elevado se denominan bobinas eléctricas, inductancias o inductores. Consisten básicamente en un conductor arrollado de forma que se incremente el concatenamiento del flujo magnético creado por la corriente variable que circule por las espiras. La inductancia de una bobina depende de sus dimensiones, del número de vueltas del hilo (espiras) y de la permeabilidad del núcleo, m . De todos los componentes

...

Descargar como (para miembros actualizados) txt (13 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com