ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

COMO SE SINTETIZAN LOS MATERIALES ELASTICOS


Enviado por   •  5 de Junio de 2015  •  4.902 Palabras (20 Páginas)  •  322 Visitas

Página 1 de 20

¿ COMO SE SINTETIZAN LOS MATERIALES ELASTICOS?

INTRODUCCION

A lo largo de cientos de años se han utilizado polímeros naturales procedentes de plantas y animales. Estos materiales incluyen madera, caucho, lana, cuero y seda. Otros polímeros naturales tales como las proteínas, las enzimas, los almidones y la celulosa tienen importancia en los procesos bioquímicos y fisiológicos de plantas y animales. Desde principios del siglo XX, la moderna investigación científica ha determinad la estructura molecular de este grupo de materiales y ha desarrollado numerosos polímeros, sintetizados a partir de pequeñas moléculas orgánicas. Muchos plásticos, cauchos y materiales fibrosos son polímeros sintéticos. Desde el fin de la segunda guerra mundial, el campo de los materiales se ha visto revolucionado por la llegada de polímeros sintéticos. Las síntesis suelen ser baratas y la propiedades conseguidas comparables, y a veces superiores, a las de los análogos naturales. En algunas aplicaciones, los metales y la madera se sustituyen por polímeros, que tienen propiedades idóneas y se pueden fabricar a bajo costo. Las propiedades de los polímeros, como en el caso de los metales y de las cerámicas, están relacionadas con la estructura elemental del material.

¿Cómo se sintetiza un material elástico?

Polímeros Los materiales elásticos son conocidos como polímeros, y en general han existido en la naturaleza desde siempre y el hombre ha sabido cómo aprovecharlos, Sin embargo, a pesar de que los polímeros pueden ser encontrados en el medio natural, el ser humano ha creado algunos sintéticos; es decir, que se preparan en un laboratorio. Son aquellos que tienen la capacidad de recobrar su forma y dimensiones primitivas cuando cesa el esfuerzo que había determinado su deformación, son todos los sólidos y siguen la Ley de Hooke, ésta dice que la deformación es directamente proporcional al esfuerzo, la relación esfuerzo-deformación se conoce como Módulo de Elasticidad.

Síntesis química Síntesis química es el proceso por el cual se producen compuestos químicos a partir de simples o precursores químicos. Su rama más amplia es la síntesis orgánica. También es realizada por los organismos vivientes en su metabolismo. El objetivo principal de la síntesis química, además de producir nuevas sustancias químicas, es el desarrollo de métodos más económicos y eficientes para sintetizar sustancias naturales ya conocidas, como por ejemplo el ácido acetilsalicílico (presente en las hojas del sauce) o el ácido ascórbico o vitamina C, que se encuentra de forma natural en muchos vegetales. La respiración celular, proceso utilizado por la mayoría de las células animales y vegetales, es la degradación de biomoléculas (glucosa, lípidos, proteínas) para que se produzca la liberación de energía necesaria, y así el organismo pueda cumplir con sus funciones vitales. Mediante la degradación de la glucosa (glucólisis) se forma ácido pirúvico. Este ácido se desdobla a dióxido de carbono y agua, generándose 36 moléculas de ATP. También la síntesis química permite obtener productos que no existen de forma natural, como el acero, los plásticos o los adhesivos.

Actualmente hay catalogados unos once millones de productos químicos de síntesis y se calcula que cada día se obtienen unos 2000 más. El progreso científico ha permitido un gran desarrollo de las técnicas de síntesis química, como la síntesis en fase sólida o la química combinatoria.

Características de los polímeros

Las propiedades mecánicas de los polímeros se especifican con los mismos parámetros utilizados para los metales: modulo elástico y resistencia a la tracción, al impacto y a la fatiga. El ensayo esfuerzo-deformación se emplea para caracterizar parámetros mecánicos de muchos materiales poliméricos. La mayoría de las características mecánicas de los polímeros son muy sensibles a la velocidad de deformación, a la temperatura y a la a naturaleza química del medio (presencia de agua, oxigeno, disolventes orgánicos, etc.) en los materiales de alta elasticidad, como las gomas, conviene modificar las técnicas de ensayo o la forma de las probetas utilizadas para los metales. El módulo de elasticidad, la resistencia a la tracción y la ductilidad (en porcentaje de alargamiento) de los polímeros se denomina como en los metales. Los polímeros son, en muchos aspectos, mecánicamente distintos de los metales. Por ejemplo, el modulo elástico de los polímeros de alta elasticidad es del orden de 7Mpa y el de los de baja elasticidad de 4*103 MPa, mientras que en los metales los valores del módulo elástico son mayores y el intervalo de variación es menor: va de 48*103 410*103 MPa. La resistencia máxima a la tracción de los polímeros es del orden de 100MPa, mientras que la de algunas aleaciones metálicas es de 4100 MPa. La elongación plástica de los metales raramente es superior al 100%, mientras que algunos polímeros de alta elasticidad pueden experimentar elongaciones del 1000%. Las características mecánicas de los polímeros son muchos más sensibles a las variaciones de temperatura, en condiciones ambientales, que las de los metales. Al observar el comportamiento esfuerzo-deformación del polimetacrilato de metilo (Plexiglás) a temperaturas comprendidas entre 4 y 60°C se aprecia que el incremento de temperatura produce disminución del módulo elástico, disminución de la resistencia a la tracción y aumento de la ductilidad: el polímero es totalmente frágil a 4°C mientras que a 50 y 60 °C experimenta una considerable deformación plástica. La influencia de la velocidad de deformación puede también ser importante en el comportamiento mecánico. Generalmente la disminución de la velocidad de deformación tiene el mismo efecto que el aumento de la temperatura en el comportamiento esfuerzo-deformación, es decir, el material se comporta como más blando más dúctil. El conocimiento de los mecanismos de la deformación contribuye a controlar las características mecánicas de estos materiales. En este sentido existen dos modelos de deformación diferentes. Uno de ellos implica la deformación plástica que ocurre en los polímeros semicristal nos. La característica más importante de estos materiales suele ser la resistencia. Por otro lado, los elastómeros se utilizan por sus excepcionales propiedades de elasticidad. Polímeros termoplásticos y termoestables. Una forma de clasificar los polímeros es según su respuesta mecánica frente a temperaturas elevadas. En esta clasificación existen dos subdivisiones: los polímeros termoplásticos y los polímeros termoestables. Los termoplásticos se ablandan al calentarse (a veces funden) y se endurecen al enfriarse (estos procesos son totalmente

...

Descargar como (para miembros actualizados) txt (33 Kb)
Leer 19 páginas más »
Disponible sólo en Clubensayos.com