Chilis
Enviado por luicarlos1627 • 11 de Octubre de 2014 • Tarea • 201 Palabras (1 Páginas) • 203 Visitas
La fórmula que nos permite hallar las potencias de un binomio se conoce como binomio de Newton.
Podemos observar que:
El número de términos es n+1.
Los coeficientes son números combinatorios que corresponden a la fila enésima del triángulo de Tartaglia.
En el desarrollo del binomio los exponentes de a van disminuyendo, de uno en uno, de n a cero; y los exponentes de b van aumentando, de uno en uno, de cero a n, de tal manera que la suma de los exponentes de a y de b en cada término es igual a n.
En el caso que uno de los términos del binomio sea negativo, se alternan los signos positivos y negativos.
Isaac Newton generalizó la fórmula para tomar otros exponentes, considerando una serie infinita:
(3)
Donde r puede ser cualquier número real (en particular, r puede ser cualquier número real, no necesariamente positivo ni entero), y los coeficientes están dados por:
(el k = 0 es un producto vacío y por lo tanto, igual a 1; en el caso de k = 1 es igual a r, ya que los otros factores (r − 1), etc., no aparecen en ese caso).
Una forma útil pero no obvia para la potencia recíproca:
(a+b)n=(n0)an+(n1)an−1b+(n2)an−2b2+…+
(nn−1)abn−1+(nn)bn
...