Comparando vectores
Enviado por • 25 de Febrero de 2015 • Tarea • 332 Palabras (2 Páginas) • 760 Visitas
Comparando vectores
En esta actividad podrás formarte una representación mental del concepto de vector
1. Analiza el siguiente cuadro
2. Con la información del cuadro anterior llena la siguiente tabla. Copara el par de vectores que se te indican, colocando en cada columna la palabra: iguales o diferentes, según sea tu apreciación.
Vectores Magnitud Dirección Sentido
A y B Igual Diferente Diferente
G y K Diferente Igual Diferente
C y D Igual Diferente Diferente
E y F Igual Diferente Diferente
P y S Igual Diferente Igual
R y G Diferente Igual Igual
B y M Igual Igual Igual
O y P Diferente Diferente Diferente
C y J Diferente Diferente Diferente
A y S Diferente Diferente Diferente
F y J Diferente Diferente Diferente
3. Calcula la magnitud y dirección de cada vector representado en la figura1. Para calcular la magnitud, supondremos que cada cuadrito de la cuadrícula mide 15 unidades por lado, utiliza el Teorema de Pitágoras para ayudarte a calcular la magnitud de algunos de ellos. Para calcular la dirección estima el ángulo de cada uno de ellos, tomando como referencia el eje positivo de las x.
Vector Magnitud Dirección Vector Magnitud Dirección
A 60 Sur J 15 Este
B 60 Norte K 45 Norte
C 21.21 Noreste L 45 Noroeste
D 21.21 Este M 60 Norte
E 21.21 Norte O 40 Suroeste
F 21.21 Sur P 45 Noroeste
G 60 Este R 45 Este
Actividad de aplicación
Laboratorio de ejercicios: suma de vectores
Parte1
1. De manera individual realiza la siguiente suma de vectores
1. F1= 60N a 30°
F2= 30N a 120°
Vr= √(vx^2 )+vy^2 Vx= VCosO Vy= VSenO
Vr= √〖60〗^2+〖30〗^2 Vx= 60Cos30° Vy=30Sen120°
Vr= √4500 Vx= 51.96 Vy= 25.98
Vr= 67.08 2. F1= 100N a 50°
F2= 135N a 140°
Vr= √(vx^2 )+vy^2 Vx= VCosO Vy= VSenO
Vr= √〖100〗^2+〖135〗^2 Vx= 100Cos50° Vy=135Sen140°
Vr= √28,225 Vx= 64.27 Vy= 86.77
Vr=
Leer Ensayo Completo
Suscríbase
168.00
3. F1= 75N a 49°
F2= 58N a 139°
Vr= √(vx^2 )+vy^2 Vx= VCosO Vy= VSenO
Vr= √〖75〗^2+〖58〗^2 Vx= 75Cos49° Vy=58Sen139°
Vr= √8989 Vx= 49.20 Vy= 38.05
Vr= 94.81 4. F1= 62N a 192°
F2= 53N a 140°
Vr= √(vx^2 )+vy^2 Vx= VCosO Vy= VSenO
...