Correlacion Estadistica
Enviado por michellezavala13 • 7 de Diciembre de 2014 • 378 Palabras (2 Páginas) • 208 Visitas
Correlación estadística
La correlación estadística determina la relación o dependencia que existe entre las dos variables que intervienen en una distribución bidimensional.
Es decir, determinar si los cambios en una de las variables influyen en los cambios de la otra. En caso de que suceda, diremos que las variables están correlacionadas o que hay correlación entre ellas.
Coeficiente de correlación
El coeficiente de correlación lineal se expresa mediante la letra r.
Propiedades
1. El coeficiente de correlación no varía al hacerlo la escala de medición.
Es decir, si expresamos la altura en metros o en centímetros el coeficiente de correlación no varía.
2. El signo del coeficiente de correlación es el mismo que el de la covarianza.
Si la covarianza es positiva, la correlación es directa.
Si la covarianza es negativa, la correlación es inversa.
Si la covarianza es nula, no existe correlación.
3. El coeficiente de correlación lineal es un número real comprendido entre menos −1 y 1.
−1 ≤ r ≤ 1
4. Si el coeficiente de correlación lineal toma valores cercanos a −1 la correlación es fuerte e inversa, y será tanto más fuerte cuanto más se aproxime r a −1.
5. Si el coeficiente de correlación lineal toma valores cercanos a 1 la correlación es fuerte y directa, y será tanto más fuerte cuanto más se aproxime r a 1.
6. Si el coeficiente de correlación lineal toma valores cercanos a 0, la correlación es débil.
7. Si r = 1 ó −1, los puntos de la nube están sobre la recta creciente o decreciente. Entre ambas variables hay dependencia funcional.
Ejercicios
Las estaturas y pesos de 10 jugadores de baloncesto de un equipo son:
Estatura (X) 186 189 190 192 193 193 198 201 203 205
Pesos (Y) 85 85 86 90 87 91 93 103 100 101
Calcular el coeficiente de correlación.
xi yi xi2 yi2 xi •yi
186 85 34 596 7 225 15 810
189 85 35 721 7 225 16 065
190 86 36 100 7 396 16 340
192 90 36 864 8 100 17 280
193 87 37 249 7 569 16 791
193 91 37 249 8 281 17563
198 93 39 204 8 649 18 414
201 103 40 401 10 609 20 703
203 100 41 209 10 000 20 300
205 101 42 025 10 201 20 705
1 950 921 380 618 85 255 179 971
Correlación positiva muy fuerte.
Los valores de dos variables X e Y se distribuyen según la tabla siguiente:
Y/X 100 50 25
14 1 1 0
18 2 3 0
22 0 1 2
Obtener e interpretar el coeficiente de correlación lineal.
Convertimos la tabla de doble entrada en una tabla simple.
xi yi fi xi • fi xi2 • fi yi • fi yi2 • fi xi • yi • fi
100 14 1 100 10
...