ESTADISTICA. REGRESION LINEAL SIMLE Y CORRELACION
Enviado por ausmar • 19 de Diciembre de 2014 • 781 Palabras (4 Páginas) • 412 Visitas
UNIDAD 1: REGRESION LINEAL SIMLE Y CORRELACION.
REGRESIÓN SIMPLE Y CORRELACIÓN
La Regresión y la correlación son dos técnicas estadísticas que se pueden utilizar para solucionar problemas comunes en los negocios.
Muchos estudios se basan en la creencia de que es posible identificar y cuantificar alguna Relación Funcional entre dos o más variables, donde una variable depende de la otra variable.
Se puede decir que Y depende de X, en donde Y y X son dos variables cualquiera en un modelo de Regresión Simple.
"Y es una función de X"
Y = f(X)
Como Y depende de X,
Y es la variable dependiente, y
X es la variable independiente.
En el Modelo de Regresión es muy importante identificar cuál es la variable dependiente y cuál es la variable independiente.
En el Modelo de Regresión Simple se establece que Y es una función de sólo una variable independiente, razón por la cual se le denomina también Regresión Desvariada porque sólo hay dos variables, una dependiente y otra independiente y se representa así:
Y = f (X)
"Y está regresando por X"
La variable dependiente es la variable que se desea explicar, predecir. También se le llama REGRESANDO ó VARIABLE DE RESPUESTA.
La variable Independiente X se le denomina VARIABLE EXPLICATIVA ó REGRESOR y se le utiliza para EXPLICAR Y.
ANÁLISIS ESTADÍSTICO: REGRESIÓN LINEAL SIMPLE
En el estudio de la relación funcional entre dos variables poblacionales, una variable X, llamada independiente, explicativa o de predicción y una variable Y, llamada dependiente o variable respuesta, presenta la siguiente notación:
Y = a + b X + e
Dónde:
a es el valor de la ordenada donde la línea de regresión se intercepta con el eje Y.
b es el coeficiente de regresión poblacional (pendiente de la línea recta)
e es el error
SUPOSICIONES DE LA REGRESIÓN LINEAL
1. Los valores de la variable independiente X son fijos, medidos sin error.
2. La variable Y es aleatoria
3. Para cada valor de X, existe una distribución normal de valores de Y (subpoblaciones Y)
4. Las variancias de las subpoblaciones Y son todas iguales.
5. Todas las medias de las subpoblaciones de Y están sobre la recta.
6. Los valores de Y están normalmente distribuidos y son estadísticamente independientes.
ESTIMACIÓN DE LA ECUACIÓN DE REGRESIÓN MUESTRAL
Consiste en determinar los valores de "a" y "b " a partir de la muestra, es decir, encontrar los valores de a y b con los datos observados de la muestra. El método de estimación es el de Mínimos Cuadrados, mediante el cual se obtiene:
Luego, la ecuación de regresión muestra estimada es
...