DERIVACION DE ORDEN SUPERIO E IMPLICITAS
Enviado por SOL9 • 8 de Octubre de 2014 • 2.803 Palabras (12 Páginas) • 1.209 Visitas
Guadalajara, Jal a 5 de Septiembre del 2014
Grupo: ER-ECDN-1402S-BI-001
Profesora: Eréndira Santos Viveros.
Alumno: Francisco Solís Mancilla
Materia: Calculo diferencial Unidad 3, Números reales y funciones
Actividad 3. Derivación de orden superior e implícita
Instrucciones: Determina la derivada de las funciones implícitas y de orden superior, además de realizar las demostraciones de las funciones presentadas.
Calcula las siguientes derivadas de funciones implícitas, suponiendo que depende de
.
(d )/dx (sen^2 (xy)+xy^2 ) = d/x(x³+ 1)
( 2senxy *cos〖xy*((x d(y))/dx〗 +y dx/dx )+ x d/dx(〖y)〗^2 + y² (d x)/dx = d/x(x³+ 1)
(2senxy * cos〖xy*(x dy/dx〗 + y dx/dx)+ 2xy dy/dx + y² (d x)/dx = 3x²
(2senxy * cos〖xy*(x dy/dx〗 +y dx/dx) +2xy dy/dx + y² = 3x²
(2senxy * cos〖xy*(x dy/dx〗 + y) + 2xy dy/dx = 3x² - y²
2x senxy * cos〖xy*dy/dx〗 + 2y senxy * cosxy + 2xy dy/dx = 3x² - y²
dy/dx (2x senxy * cosxy + 2xy) = 3x² - y² - 2y senxy * cosxy
dy/dx = (3x² - y^2- 2y senxy * cosxy)/(2x senxy * cos xy + 2xy)
Si deseamos simplificar se tiene el seno (2a) = 2 sina .cosa
dy/dx = (3x² - y^2- y sen2xy )/(x 〖sen 2〗xy + 2xy)
.
Derivar si y depende de x realizar √(x+x²y ) + e^xy = ln〖(x+y)〗
d/dx (〖x+x²y)〗^(1/2) + d/dx 〖(e〗^xy)= 〖 d/dx ln〗〖(x+y〗)
1/2 (〖x+x²y)〗^((-1)/2) * d/dx (x+x²y) + e^xy (d xy)/dx = 1/(x+y) d/dx (x+y)
1/2 ((〖x+x²y)〗^((-1)/2) *( d/dx(x) + d/dx (x²y))) + e^xy (d xy)/dx = 1/(x+y) (d/dx (x) + d/dx (y))
1/2* 1/√(x+x²y) (1+ 2xy’) +( e^xy * x d/dx(y) + y d/dx(x)) = 1/(x+y) (1 + dy/dx)
1/(2√(x+x²y)) + 2xy'/(2√(x+x²y)) + e^xy(x y’ + y) = 1/(x+y) (1 +y’)
2xy'/(2√(x+x²y)) + e^xy(X y’ + y) = 1/(x+y) (1 +y’) - 1/(2√(x+x²y))
Y’ 2x/(2√(x+x²y)) + y’ x e^xy + ye^xy - 1/(x+y) – y’ 1/(x+y) = - 1/(2√(x+x²y))
Y’ 2x/(2√(x+x²y)) + y’ x e^xy - y’ 1/(x+y)= - 1/(2√(x+x²y)) - ye^xy + 1/(x+y)
Y’ (x/√(x+x²y) + x e^xy- 1/(x+y)) = - 1/(2√(x+x²y)) - ye^xy + 1/(x+y)
Y’ = (- 1/(2√(x+x²y)) - ye^xy + 1/(x+y))/((x/√(x+x²y) + x e^xy- 1/(x+y)) )
.
d/dx ( ln(x/y) + d/dx (sen^2 (x+y²) = d/dx(2x2 y)
d/dx(lnx - lny) + 2 sen(x+y²)* cos〖(x+y²) 〗 d/dx (x+y²) = d/dx(2x2 y)
d/dx(lnx - lny) + 2 sen(x+y²)* cos〖(x+y²) 〗 d/dx (x+y²) = 2x² d/dx(y) + y d/dx(2x²)
1/x - 1/y * dy/dx +2 sen(x+y²)* cos〖(x+y²) 〗 ( d/dx(x) + d/dx (y²) = 2x² dy/dx + 4xy
- 1/y * dy/dx +2 sen(x+y²)* cos〖(x+y²) 〗(1 + 2y dy/dx) = 2x² dy/dx + 4xy - 1/x
- 1/y * dy/dx + 2 (1 + 2y dy/dx) (sen(x+y²)* cos〖(x+y²) 〗) = 2x² dy/dx + 4xy - 1/x
- 1/y * dy/dx + (2 + 4y dy/dx) (sen(x+y²)* cos〖(x+y²) 〗) = 2x² dy/dx + 4xy - 1/x
- 1/y * dy/dx + 2 sen(x+y²)* cos〖(x+y²) 〗+ 4y sen(x+y²)* cos〖(x+y²) dy/dx 〗= 2x² dy/dx + 4xy - 1/x
- 1/y * dy/dx + 4y sen(x+y²)* cos〖(x+y²) dy/dx 〗- 2x² dy/dx = 4xy - 1/x - 2 sen(x+y²)* cos〖(x+y²) 〗
dy/dx (- 1/y + 4y sen(x+y²)* cos〖 (x+y²)〗 - 2x²) = 4xy - 1/x - 2 sen(x+y²)* cos〖(x+y²) 〗
dy/dx (- 1/y + 4y sen(x+y²)* cos〖 (x+y²)〗 - 2x²) = 4x²y - 1 – 2x sen(x+y²)* cos〖(x+y²) 〗
(dy )/dx(-2x²y -1 + 4y² sen(x+y²)* cos〖 (x+y²)〗) = 4x²y - 1 – 2x sen(x+y²)* cos〖(x+y²) 〗
(dy )/dx= (4x²y - 1 – 2x sen(x+y²)* cos〖(x+y²) 〗)/(-2x²y -1 + 4y² sen(x+y²)* cos〖 (x+y²)〗 )
Calcular las siguientes derivadas de orden superior:
.
d/dx(x^5 e^3x) = x^(5 ) d/dx (e^3x) + e^3x d/dx (x^(5 ))
y´ (x^5 e^3x) = x^(5 ) e^3x * 3 + e^3x * 5〖 x〗^(4 )
y´ (x^5 e^3x) = 3〖 x〗^(5 ) e^3x + 5〖 x〗^(4 ) e^3x
y´ (x^5 e^3x) = e^3x (3〖 x〗^(5 )+ 5〖 x〗^4)
y´´ (x^5 e^3x) = e^3x d/dx(3〖 x〗^(5 )+ 5〖 x〗^4) + (3〖 x〗^(5 )+ 5〖 x〗^4) d/dx(e^3x)
y´´ (x^5 e^3x) = e^3x (15〖 x〗^(4 )+ 20〖 x〗^3) + (3〖 x〗^(5 )+ 5〖 x〗^4) e^3x * 3
y´´ (x^5 e^3x) = e^3x (15〖 x〗^(4 )+ 20〖 x〗^3) + 3 e^3x (3〖 x〗^(5 )+ 5〖 x〗^4)
y´´´ (x^5 e^3x) = e^3x d/dx (15〖 x〗^(4 )+ 20〖 x〗^3) + (15〖 x〗^(4 )+ 20〖 x〗^3) d/dx (e^3x) + 3 e^3x d/dx (3〖 x〗^(5 )+ 5〖 x〗^4) + (3〖 x〗^(5 )+ 5〖 x〗^4)d/dx(3 e^3x)
y´´´ (x^5 e^3x) = e^3x (60 〖 x〗^(3 )+ 60〖 x〗^2) + (15〖 x〗^(4 )+ 20〖 x〗^3) (e^3x)(3) + 3 e^3x (15〖 x〗^(4 )+ 20〖 x〗^3) + (3〖 x〗^(5 )+ 5〖 x〗^4) (3 * e^3x *3)
y´´´ (x^5 e^3x) = e^3x (60 〖 x〗^(3 )+ 60〖 x〗^2) + (e^3x) 3 (15〖 x〗^(4 )+ 20〖 x〗^3) + 3 e^3x (15〖 x〗^(4 )+ 20〖 x〗^3) + * e^3x 9 (3〖 x〗^(5 )+ 5〖 x〗^4)
y´´´ (x^5 e^3x) = e^3x (60 〖 x〗^(3 )+ 60〖 x〗^2) + (e^3x) (45〖 x〗^(4 )+ 60〖 x〗^3) + e^3x (45〖 x〗^(4 )+ 60〖 x〗^3) + e^3x (27〖 x〗^(5 )+ 45〖 x〗^4)
y´´´ (x^5 e^3x) = e^3x(60 〖 x〗^(3 )+ 60〖 x〗^2 + 45〖 x〗^(4 )+ 60〖 x〗^3+ 45〖 x〗^(4 )+ 60〖 x〗^3 + 27〖 x〗^(5 )+ 45〖 x〗^4)
y´´´ (x^5 e^3x) = e^3x (180 〖 x〗^(3 )+ 60 〖 x〗^2 + 135 〖 x〗^(4 ) + 27 〖 x〗^(5 ))
y´´´ (x^5 e^3x) = e^3x (27〖 x〗^(5 )+ 135 〖 x〗^(4 ) + 180 〖 x〗^(3 )+ 60 〖 x〗^2
.
y´ (e^3x sen2x) = e^3x d/dx (sen2x) + sen2x d/dx e^3x
y´ (e^3x sen2x) = e^3x cos2x * 2 + sen2x * e^3x *3
y´ (e^3x sen2x) = 2e^3x cos2x + 3 〖e^3x sen〗2x *
y´ (e^3x sen2x) = e^3x (2cos2x + 3 sen2x)
y´´ (e^3x sen2x) = e^3x d/dx (2〖 cos〗2x + 3 sen2x) + (2〖 cos〗2x + 3 sen2x) d/dx (e^3x ) =
y´´ (e^3x sen2x) = e^3x ( d/dx (2〖 cos〗2x) + d/dx (3 sen2x)) + (2〖 cos〗2x + 3 sen2x) ( d/dx (e^3x )) =
y´´ (e^3x sen2x) = e^3x ((- 2 sen2x*2) + 3 〖 cos〗2x *2) + (2〖 cos〗2x + 3 sen2x) (e^3x*3) =
y´´ (e^3x sen2x) = e^3x(- 4 sen〖 2x〗 + 6 〖 cos〗2x ) + e^3x (6〖 cos〗2x + 9 sen2x) =
y´´ (e^3x sen2x) = e^3x(- 4 sen〖 2x〗 + 6 〖 cos〗2x ) + e^3x (9 sen2x
...