Definición de Estadística
Enviado por lpinto276 • 18 de Noviembre de 2014 • Síntesis • 1.132 Palabras (5 Páginas) • 295 Visitas
Definición de Estadística:
1. La estadística es comúnmente considerada como una colección de hechos numéricos expresados en términos de una relación sumisa, y que han sido recopilados a partir de otros datos numéricos.
2. Definen la estadística como un valor resumido, calculado, como base en una muestra de observaciones que generalmente, aunque no por necesidad, se considera como una estimación de parámetro de determinada población; es decir, una función de valores de muestra.
3. La Estadística es la parte de las Matemáticas que se encarga del estudio de una determinada característica en una población, recogiendo los datos, organizándolos en tablas, representándolos gráficamente y analizándolos para sacar conclusiones de dicha población.
4. La Estadística es la ciencia cuyo objetivo es reunir una información cuantitativa concerniente a individuos, grupos, series de hechos, etc. y deducir de ello gracias al análisis de estos datos unos significados precisos o unas previsiones para el futuro.
Estadística descriptiva. Realiza el estudio sobre la población completa, observando una característica de la misma y calculando unos parámetros que den información global de toda la población.
Estadística inferencial. Realiza el estudio descriptivo sobre un subconjunto de la población llamado muestra y, posteriormente, extiende los resultados obtenidos a toda la población.
Veamos dos ejemplos que nos aclaren estos dos tipos de Estadística:
Ejemplo 1. Cuando van a llegar cualquier tipo de elecciones, por ejemplo, las elecciones generales, es muy frecuente que los medios de comunicación, nos adelanten los resultados de encuestas o sondeos en los que se nos indica el resultado final de dichas elecciones con una precisión y con un error determinado. Estos sondeos son realizados por distintas técnicas sobre un grupo (muestra) más o menos numeroso de personas. Naturalmente, cuánto mayor sea el número de españoles con derecho a voto encuestados, mayor será la fiabilidad de la encuesta, pero también mayor será el coste del sondeo. El estudio de esta muestra se haría mediante estadística descriptiva, pero lo que nos interesa no es el resultado de este estudio reducido sino el resultado final de las elecciones. El paso de generalizar los resultados de la muestra a toda la población, se hace mediante técnicas de Estadística inferencial. La elección de la muestra debe hacerse mediante métodos de muestreo para que el estudio resulte lo más fiable posible.
Ejemplo 2. Supongamos que estamos en un instituto con un número muy elevado de alumnos y alumnas, por ejemplo 500, y queremos hacer un estudio estadístico sobre su altura.
Un método sería pasar clase por clase y medirlos a todos, esto nos podría llevar un tiempo considerable pero sería la forma más exacta de hacer dicho estudio, aunque es fácil encontrarnos con ausencias y tendríamos que volver varios días y pasar lista para conseguir la estatura de todo el alumnado. Una vez que tengamos todos los datos en nuestro poder los resultados los obtendríamos mediante Estadística descriptiva.
Otra posibilidad podría ser pasar clase por clase, decirle a los alumnos y alumnas que anoten su estatura en un papel y recogerlos todos. También así tendríamos un estudio de Estadística descriptiva, aunque seguramente menos fiable que con el método anterior, pues casi con toda seguridad, y lo digo por experiencia, algunos alumnos escriban su estatura a cálculo y otros, con ganas de bromas, muy por encima o muy por debajo de la realidad.
Y otra posibilidad sería escoger una muestra, es decir un grupo de por ejemplo 50 personas, hacer el estudio descriptivo sobre ellas y después generalizarlo a todo el instituto con Estadística inferencial. En este caso, comprobaríamos por una parte que cuánto mayor sea la muestra
...