ECUACIONES CUADRATICAS Y DESIGUALES
Enviado por Jonatan Mendoza • 4 de Abril de 2016 • Tarea • 1.567 Palabras (7 Páginas) • 373 Visitas
JHONATAN MENDOZA LOPEZ
ECUACIONES CUADRATICAS Y DESIGUALES
ING. KARINA SOTO SILVA
SANTA LUCIA DEL CAMINO, 04 DE ABLIL DEL 2016
INTRODUCCION
INDICE
- ECUACIONES CUADRATICAS
1. Factorización Simple
2. Completando el Cuadrado
3. Fórmula Cuadrática
ECUACIÓN CUADRÁTICA
Una ecuación cuadrática es una ecuación en su forma ax2 + bx + c, donde a, b, y c son números reales.
Ejemplo:
9x2 + 6x + 10 a = 9, b = 6, c = 10
3x2 - 9x a = 3, b = -9, c = 0
-6x 2 + 10 a = -6, b = 0, c = 10
Hay tres formas de hallar las raíces ( el o los valores de la variable) de las ecuaciones cuadráticas:
1. Factorización Simple
2. Completando el Cuadrado
3. Fórmula Cuadrática
Factorización Simple:
La factorización simple consiste en convertir la ecuación cuadrática en un producto de binomios. Luego, se busca el valor de x de cada binomio.
Ejemplo: Realizar la factorización simple de la ecuación
x2 + 2x – 8 = 0 a = 1 b = 2 c = - 8
(x ) (x ) = 0 [x ·x = x2]
( x + ) (x - ) = 0 Hay que buscar dos números que multipliquen y den el valor de c y que a la vez sumen y el valor sea igual a b. En este caso, dos números cuyo producto sea -8, y que estos mismos números sumen 2. |
(x + 4 ) (x – 2) = 0 4 y –2 4 + -2 = 2
[pic 4] 4 · -2 = -8
x + 4 = 0 x – 2 = 0
x + 4 = 0 x – 2 = 0
x = 0 – 4 x = 0 + 2
x = -4 x = 2
Estas son las dos soluciones.
Completando el Cuadrado:
En este método, la ecuación tiene que estar en su forma ax2+bx+c; y siempre la constante de a tiene que ser igual a 1.
Por ejemplo, para factorizar la ecuación 4x2 + 12x – 8 = 0, hay que despejar de la siguiente forma:
|
x2 + 3x – 2 = 0 Ahora, a= 1.
Ejemplo:
x2 + 2x – 8 = 0 [Ya está en su forma donde a = 1.]
x2 + 2x = 8 [ Pasar a c al lado opuesto.]
x2 + 2x + ___ = 8 + ___ [Colocar los blancos]
x2 + 2x + 1 = 8 + 1 En el blanco, colocar la mitad de b al cuadrado. 2/2= 1 12= 1 |
x2 + 2x + 1 = 9
( ) ( ) = 9 Hay que factorizar.
Nota: Siempre será un cuadrado perfecto.
Para eliminar el exponente, hay que colocar raíz cuadrada.
Ej : x2 = 9
X = [pic 5]
X = [pic 6]
( x + 1) (x + 1) = 9 (x + 1)2 = 9 (x + 1) = [pic 7]
|
x + 1 = ± 3
x = -1 ± 3 [Separar las dos soluciones.]
x = -1 + 3 x = -1 – 3
x = 2 x = -4
Fórmula Cuadrática:
Este método es muy simple: hay que sustituir los valores de a, b y c de la ecuación cuadrática a la siguiente fórmula:
[pic 8]
Ejemplo:
X2 + 2x – 8 = 0 a = 1, b = 2, c = -8
[pic 9]
x = -2 ± 6
2
X = -2 + 6 x = -2 - 6
2 2
x = 4 x = -8
2 2
x = 2 x = - 4
ECUACIONES DESIGUALES
LAS DESIGUALDADES Si a, b y c son tres números reales, se cumple que:
1._Si a > b y b > c, entonces a > c (Transitiva)
Si a < b y b < c, entonces a < c
2._Si a > b, entonces (a ± c) > (b ± c)
Si a < b, entonces (a ± c) < (b ± c).
3._Si a > b y c > 0, entonces ac > bc
Si a > b y c < 0, entonces ac < bc.
...