ENSAYO QUIMICA
Enviado por marian2536 • 1 de Diciembre de 2013 • 607 Palabras (3 Páginas) • 423 Visitas
INDICES DE MILLER
Para poder identificar unívocamente un sistema de planos cristalográficos se les asigna un juego de tres números que reciben el nombre de índices de Miller. Los índices de un sistema de planos se indican genéricamente con las letras (h k l).
Los índices de Miller son números enteros, negativos o positivos, y son primos entre sí. El signo negativo de un índice de Miller debe ser colocado sobre dicho número.
El índice de Miller fue presentado por primera vez por el mineralogista británico William Hallowes Miller en 1839. Existen además otras notaciones para los casos especiales de cristales con planos simétricos.
Obtención de los índices de Miller
Los índices de Miller de un plano cristalográfico están definidos como los recíprocos de las intersecciones que el plano determina con los ejes (x, y, z) de nuestro sistema de ejes coordenados.
Para obtener los índices de Miller de un plano primero determinamos la intersección de este con los ejes. Una vez obtenidos los números, se hallan sus inversos y los multiplicamos por el mínimo común múltiplo (A).
Un plano queda así representado por la forma (h, k, l):
h = A/m ; k = A/n ; l = A/p
Se deduce que si un plano es paralelo a uno de los ejes, lo corta en el infinito, y su índice será cero. Si lo cortara en la parte negativa, el índice será negativo, lo cual se indicará con un guión sobre dicho índice. Si el plano pasa por el origen se desplazará a una posición equivalente en la celda.
En el caso de que tengamos planos de redes equivalentes, relacionadas por la simetría del sistema cristalino, se le llamara Familia de Planos y se encerraran entre llaves {h, k, l}.
Para determinar los índices de una dirección cristalográfica cualquiera, se traza por el origen una paralela a esta. Sobre ella se toma el nudo (A) arbitrario de coordenadas (x, y, z), tal que sea múltiplo de las aristas (a, b, c) del cubo:
x = r•a ; y = s•b ; z = t•c
Una vez obtenidas (r, s, t) se dividen por su máximo común divisor (D), con lo que resultan los números:
u = r/D ; v = s/D ; w = t/D
La recta queda así definida por sus índices entre corchetes [u, v, w].
Es importante la relación que existe solo en el sistema cúbico, en los que los índices de Miller de una dirección perpendicular a un plano son los mismos.
Para la Familia de Direcciones aquí se usa como notación < u v w >
Casos especiales
El procedimiento de clasificación de los cristales se completa con los siguientes casos especiales para los cuales se debe tener en cuenta :
• Si el plano a indexar es paralelo a un eje coordenado, el punto de intersección se debe asumir en el infinito, que luego en los cálculos se interpretará cómo 0 (ver imágenes).
• Si el plano a indexar tiene
...