ElectromaGNETISMO
Enviado por eynar2010 • 18 de Marzo de 2015 • 3.401 Palabras (14 Páginas) • 176 Visitas
INTRODUCCIÓN:
LA ÉPOCA MODERNA
EN ESTE capítulo presentaremos algunas de las aplicaciones del magnetismo y su influencia en el mundo moderno. Podemos decir que la revolución que está sufriendo el mundo en el campo tecnológico y que afectará sin duda toda la vida cultural, política y social de lo que resta del siglo y del subsiguiente, es producto en gran medida del avance de la física. Esto se ve de manera particular en el desarrollo de la microelectrónica y de otras áreas de alta tecnología que utilizan los principios del electromagnetismo en el diseño de aparatos y sistemas de información, medición, etc. Asimismo, la creación de nuevos materiales y su aplicación se basa en gran medida en el conocimiento logrado en el electromagnetismo y la mecánica cuántica.
Por supuesto que el magnetismo halló aplicación desde el siglo pasado. El teléfono y el telégrafo alrededor de 1880 eran aparatos activados por baterías y, basados en el descubrimiento de Oersted, las grandes aplicaciones a la ingeniería de la inducción electromagnética son el motor eléctrico y el dínamo. El mismo Henry, codescubridor de la inducción electromagnética, había construido un motor en 1831 y diseñado juguetes primitivos. Edison inventó un generador bipolar en 1878, un año antes de inventar el filamento de luz eléctrico. El hecho de que hubiera un generador de potencia hizo que el uso de luz eléctrica se difundiera rápidamente. Con el experimento de Hertz se sentaron las bases para la transmisión inalámbrica de ondas de radio. De la misma forma, aparatos como la radio y la televisión utilizan muchos de los conocimientos que sobre electromagnetismo se generaron en las primeras decenas del siglo XX.
Las aplicaciones que se realizan en la actualidad son variadísimas y la ciencia del magnetismo se ha vuelto central en nuestra tecnología como medio ideal de almacenamiento de datos en cintas magnéticas, discos magnéticos y burbujas magnéticas. Además, se empieza a aplicar en la medicina. Como ya lo mencionamos, el desarrollo de nuevos materiales y su aplicación a modernas tecnologías es uno de los dínamos que mueven a la sociedad posindustrial representada por los Estados Unidos y, sobre todo, por Japón, donde, por cierto, la llegada de Ewing a fines del siglo pasado motivó un esfuerzo sin precedente de Honda para desarrollar el estudio del magnetismo. Por su parte, los otros países desarrollados también poseen un gran acervo de conocimientos para obtener un considerable avance en el campo. En cuanto a los países subdesarrollados el gran desafío consiste en utilizar en forma óptima los escasos recursos (sobre todo humanos) que se tienen para no quedar a la zaga de esta explosión científica y tecnológica.
A continuación presentaremos en forma selectiva algunos de los usos del magnetismo en diversas áreas. Esta descripción no pretende cubrir todos los temas de aplicación del magnetismo, ni mucho menos asegurar que los temas que tratamos están desarrollados exhaustivamente. Sólo queremos presentar un panorama de las inmensas posibilidades que en este campo existen cuando la ciencia y la tecnología se conjugan en forma imaginativa. Para esto examinaremos el área de nuevos materiales magnéticos sólidos, los ferrofluidos, la tecnología en informática basada en el magnetismo, la resonancia magnética nuclear en la medicina y el efecto de campos magnéticos en tecnología nuclear.
ALEACIONES Y COMPUESTOS CRISTALINOS
Una de las ramas importantes del magnetismo se ocupa de los efectos que influyen en la estructura y formación de dominios magnéticos tanto en bulto como en películas delgadas. En forma específica, del comportamiento de materiales magnéticos granulares que no contengan dominios, sino que sean dominios únicos (como en el caso de las bacterias discutido anteriormente). Esto es muy importante, ya que sus propiedades son más fáciles de entender. Cuando se dice que un material es magnéticamente duro significa que las partículas que lo componen son muy anisotrópicas y, por lo tanto, que su rotación se dificulta. De esta manera, una gran cantidad de materiales como rocas, magnetita, etc., han sido investigados y utilizados sobre todo en medios de grabación magnética.
Existe un gran interés por estudiar aleaciones compuestas por materiales magnetoelásticos especiales que tengan aplicaciones en sellos metalo-vidriosos, tubos de guía de onda, etc. La cancelación que ocurre entre la expansión térmica positiva de la mayoría de los materiales y la contribución magnética negativa origina que en aleaciones llamadas invar (como fierro-níquel) expansión térmica sea casi nula. Otras aleaciones como níquel-platino, que es cristalina, y fierro-boro, que es amorfa, muestran una gran potencialidad para aplicaciones como las arriba mencionadas.
Otra aplicación de aleaciones magnéticas amorfas proviene de que se necesitan materiales magnéticos a los se les pueda cambiar su dirección de magnetización con poco gasto de energía. Estos materiales encuentran su uso en transformadores y se necesitan para minimizar pérdidas por calor. En aleaciones magnéticas producidas por templado rápido y de composición fierro-níquel metaloide (como silicio, bario, etc.) se minimiza la formación de anisotropías de los dominios magnéticos y el material es magnéticamente más suave.
El llamado mérito de un imán permanente está en relación con la intensidad de su magnetización permanente. El obtener aleaciones permanentes de, por ejemplo, hierro-neodinio-boro, ya sea por templado rápido o por técnicas menos sofisticadas, ha permitido nuevas aplicaciones. La extrema dureza de estos materiales tiene su origen en la estructura cristalina tetragonal, la cual aumenta la anisotropía magnética. La aplicación de estos materiales aún no ha sido evaluada completamente.
Transductores que transformen movimientos mecánicos en señales eléctricas son fundamentales para la industria moderna. Los transductores basados en el magnetismo utilizan el hecho de que al aplicar un esfuerzo las propiedades magnéticas del material utilizado como transductor varían en forma proporcional. A esto se le conoce como magnetostricción. Los nuevos compuestos policristalinos muestran una magnetización 50 veces mayor que el níquel. Las aplicaciones en la industria militar son obvias (detección de submarinos).
De lo anteriormente expuesto es claro que la búsqueda de materiales magnéticos con propiedades específicas para cientos de aplicaciones está en pleno auge.1 [Nota 1]Sin lugar a dudas la computadora ayudará al diseño y estudio de materiales sólidos con un comportamiento extremo. A continuación estudiaremos con más detalle un material líquido
...