Estrellas De Protones
Enviado por exilon • 3 de Marzo de 2014 • 768 Palabras (4 Páginas) • 449 Visitas
Estrella de neutrones
Una estrella de neutrones es un tipo de remanente estelar resultante del colapso gravitacional de una estrella supergigante masiva después de agotar el combustible nuclear en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre lo indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. Las estrellas de neutrones son muy calientes y se apoyan en contra de un mayor colapso mediante presión de degeneración cuántica, debido al fenómeno descrito por el principio de exclusión de Pauli. Este principio establece que dos neutrones (o cualquier otra partícula fermiónica) no pueden ocupar el mismo espacio y estado cuántico simultáneamente.
Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares,1 2 3 a con un radio correspondiente aproximado de 12 km.4 b En cambio, el radio del sol es de unas 60 000 veces esa cifra. Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m3 (de 2,6×1014 a 4,1×1014 veces la densidad del sol),c lo que se compara con la densidad aproximada de un núcleo atómico de 3×1017 kg/m3.5 La densidad de una estrella de neutrones varía desde menos de 1×109 kg/m3 en la corteza, aumentando con la profundidad a más de 6×1017 u 8×1017 kg/m3 aún más adentro (más denso que un núcleo atómico).6 Esta densidad equivale aproximadamente a la masa de un Boeing 747 comprimido en el tamaño de un pequeño grano de arena.
En general, estrellas compactas de menos de 1,44 masas solares —el límite de Chandrasekhar— son enanas blancas, y por encima de 2 a 3 masas solares —el límite de Tolman-Oppenheimer-Volkoff— puede crearse una estrella de quarks; no obstante, esto es incierto. El colapso gravitatorio generalmente ocurre en cualquier estrella compacta de entre 10 a 25 masas solares, y producirá un agujero negro.7 Algunas estrellas de neutrones giran rápidamente y emiten rayos de radiación electromagnética como púlsares.
Formación
Si una enana blanca llega hasta el límite de Chandrasekhar, que es de 1,44 masas solares, ésta se colapsa para convertirse en estrella de neutrones.
Tras la explosión que genera por un breve tiempo a una supernova, queda un núcleo compacto hiperdenso de hierro y otros metales pesados que sigue comprimiéndose y calentándose. Su masa es demasiado grande y los electrones degenerados no son capaces de detener el colapso, por lo que la densidad sigue aumentando. En principio, la densidad necesaria para que se dé la neutronización (recombinación de electrones con protones para dar neutrones) es de 2,4 × 107 g/cm³. Como en las estrellas degeneradas no hay protones libres, la densidad necesaria es, en realidad, más elevada, dado que los electrones han de superar
...