ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Fenomeno De La Conductividad Electrica


Enviado por   •  11 de Agosto de 2013  •  1.684 Palabras (7 Páginas)  •  2.551 Visitas

Página 1 de 7

FENOMENO DE LA CONDUCCION ELECTRICA DE LOS MATERIALES

Como sabemos existen materiales capaces de conducir la corriente eléctrica mejor que otros. Generalizando, se dice que los materiales que presentan poca resistencia al paso de la corriente eléctrica son conductores. Analógicamente, los que ofrecen mucha resistencia al paso de esta, son llamados aislantes. No existe el aislante perfecto y prácticamente tampoco el conductor perfecto.

Existe un tercer grupo de materiales denominados semiconductores que, como su nombre lo indica, conducen la corriente bajo ciertas condiciones. Lo que diferencia a cada grupo es su estructura atómica. Los conductores son, generalmente, metales esto se debe a que dichos poseen pocos átomos en sus últimas órbitas y, por lo tanto, tienen tendencia a perderlos con facilidad. De esta forma, cuando varios átomos de un metal, se acercan los electrones de su última órbita se desprenden y circulan desordenadamente entre una verdadera red de átomos. Este hecho (libertad de los electrones) favorece en gran medida el paso de la corriente eléctrica.

Los aislantes, en cambio, están formados por átomos con muchos electrones en sus últimas órbitas (cinco a ocho), por lo que, no tienen tendencia a perderlos fácilmente y a no establecer una corriente de electrones. De ahí su alta resistencia.

También existe otro tercer tipo de materiales, que cambia en mayor o menor medida la característica de los anteriores, los semiconductores. Su característica principal es la de conducir la corriente sólo bajo determinadas circunstancias, y evitar el paso de ella en otras.

Es, precisamente, en este tipo de materiales en los que la electrónica de estado sólida está basada. La estructura atómica de dichos materiales presenta una característica común: está formada por átomos tetravalentes (es decir, con cuatro electrones en su última órbita), por lo que les es fácil ganar cuatro o perder cuatro.

Semiconductores

Un semiconductor es un componente que no es directamente un conductor de corriente, pero tampoco es un aislante. En un conductor la corriente es debida al movimiento de las cargas negativas (electrones). En los semiconductores se producen corrientes producidas por el movimiento de electrones como de las cargas positivas (huecos). Los semiconductores son aquellos elementos pertenecientes al grupo IV de la Tabla Periódica (Silicio, Germanio, etc. Generalmente a estos se le introducen átomos de otros elementos, denominados impurezas, de forma que la corriente se deba primordialmente a los electrones o a los huecos, dependiendo de la impureza introducida. Otra característica que los diferencia se refiere a su resistividad, estando ésta comprendida entre la de los metales y la de los aislantes.

Disposición esquemática de los átomos de un semiconductor de silicio puro, No existen electrones ni huecos libres. La disposición esquemática de los átomos para un semiconductor de silicio podemos observarla en la figura de arriba, Las regiones sombreadas representan la carga positiva neta de los núcleos y los puntos negros son los electrones, menos unidos a los mismos. La fuerza que mantiene unidos a los átomos entre sí es el resultado del hecho de que los electrones de conducción de cada uno de ellos, son compartidos por los cuatro átomos vecinos.

A temperaturas bajas la estructura normal es la que se muestra en la figura de arriba en la cual no se observa ningún electrón ni hueco libre y por tanto el semiconductor se comporta como un aislante. Estos cuatro electrones se encuentran formando uniones covalentes con otros átomos vecinos para así formal un cristal, que es la forma que se los encuentra en la naturaleza. Si esta estructura se encuentra a una temperatura muy baja o en el cero absoluto, el cristal tendrá tan poca energía que no hará posible la conducción eléctrica. Al aumentar la temperatura (a temperatura ambiente por ejemplo) ciertos electrones adquieren suficiente energía para romper el enlace del que forman parte y "saltar" al siguiente orbital. Esto provoca la formación de un espacio vacío, que por carencia de electrones, posee carga positiva, a este espacio se lo denomina hueco.

El aumento de temperatura rompe algunas uniones entre átomos liberándose un cierto número de electrones. En cambio, a la temperatura ambiente (20-25 grados C.) algunas de las fuertes uniones entre los átomos se rompen debido al calentamiento del semiconductor y como consecuencia de ello algunos de los electrones pasan a ser libres. En la figura siguiente se representa esta situación. La ausencia del electrón que pertenecía a la unión de dos átomos de silicio se representa por un círculo, la forma en que los huecos contribuyen a la corriente, se detalla seguidamente Cuando un electrón puede vencer la fuerza que le mantiene ligado al núcleo y por tanto abandona su posición, aparece un hueco, y le resulta relativamente fácil al electrón del átomo vecino dejar su lugar para llenar este hueco. Este electrón que deja su sitio para llenar un hueco, deja a su vez otro hueco en su posición inicial, De esta manera el hueco contribuye a la corriente lo mismo que el electrón, con una trayectoria de sentido opuesto a la de éste.

Niveles De Energía

Un cristal está formado por un conjunto de átomos muy próximos entre sí dispuestos espacialmente

...

Descargar como (para miembros actualizados) txt (10 Kb)
Leer 6 páginas más »
Disponible sólo en Clubensayos.com