ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Hipotenusa


Enviado por   •  14 de Julio de 2013  •  364 Palabras (2 Páginas)  •  410 Visitas

Página 1 de 2

Hipotenusa

La hipotenusa es el lado de mayor longitud de un triángulo rectángulo, y el lado opuesto al ángulo recto. La medida de la hipotenusa puede ser hallada mediante el teorema de Pitágoras, si se conoce la longitud de los otros dos lados, denominados catetos.

Razones trigonométricas en un triángulo rectángulo

Seno

El seno del ángulo B es la razón entre el cateto opuesto al ángulo y la hipotenusa.

Se denota por sen B.

Coseno

El coseno del ángulo B es la razón entre el cateto contiguo al ángulo y la hipotenusa.

Se denota por cos B.

Tangente

La tangente del ángulo B es la razón entre el cateto opuesto al ángulo y el cateto contiguo al ángulo.

Se denota por tg B.

Cosecante

La cosecante del ángulo B es la razón inversa del seno de B.

Se denota por cosec B.

Secante

La secante del ángulo B es la razón inversa del coseno de B.

Se denota por sec B.

Cotangente

La cotangente del ángulo B es la razón inversa de la tangente de B.

Se denota por cotg B.

Razones trigonométricas en una circunferencia

Se llama circunferencia goniométrica a aquélla que tiene su centro en el origen de coordenadas y su radio es la unidad.

En la circunferencia goniométrica los ejes de coordenadas delimitan cuatro cuadrantes que se numeran en sentido contrario a las agujas del reloj.

QOP y TOS son triángulos semejantes.

QOP y T'OS′ son triángulos semejantes.

El seno es la ordenada.

El coseno es la abscisa.

-1 ≤ sen α ≤ 1

-1 ≤ cos α ≤ 1

Signo de las razones trigonométricas

• De la semejanza entre ABC y AHC:

y dos triángulos son semejantes si hay dos o más ángulos congruentes.

• De la semejanza entre ABC y BHC:

Los resultados obtenidos son el teorema del cateto. Sumando:

Pero , por lo que finalmente resulta:

La relación entre las superficies de dos figuras semejantes es igual al cuadrado de su razón de semejanza. En esto pudo haberse basado Pitágoras para demostrar su teorema

Pitágoras también pudo haber demostrado el teorema basándose en la relación entre las superficies de figuras semejantes.

Los triángulos PQR y PST son semejantes, de manera que:

siendo r la razón de semejanza entre dichos triángulos. Si ahora buscamos la relación entre sus superficies:

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com