INVESTIGACIÓN 2 SOLUCIÓN DE TRIÁNGULOS
Enviado por Anapau2414 • 14 de Febrero de 2023 • Informe • 906 Palabras (4 Páginas) • 137 Visitas
[pic 1]
[pic 2]
INVESTIGACIÓN 2
SOLUCIÓN DE TRIÁNGULOS
TERCER SEMESTRE
Objetivos:
- El estudiante aplica métodos y estrategias de investigación, utilizando los fundamentos del pensamiento científico, para la resolución de problemas de manera innovadora.
- El estudiante integra sus conocimientos de aritmética, pensamiento algebraico y geometría como herramientas para la resolución de problemas en diversos contextos.
Propósito:
- Conocer los conceptos básicos de la unidad tres y las fórmulas para resolver diferentes tipos de triángulos.
Competencias genéricas del MCC del SNB:
Se expresa y comunica
CG 4. Escucha, interpreta y emite mensajes pertinentes en distintos contextos mediante la utilización de medios, códigos y herramientas apropiadas.
- CG 4.1 Expresa ideas y conceptos mediante representaciones lingüísticas, matemáticas o gráficas.
Piensa crítica y reflexivamente
CG 5. Desarrolla innovaciones y propone soluciones a problemas a partir de los métodos establecidos.
- CG 5.1 Sigue instrucciones y procedimientos de manera reflexiva, comprendiendo cómo cada uno de sus pasos contribuye al alcance de un objetivo.
- CG 5.2 Ordena información de acuerdo a categorías, jerarquías y relaciones.
Instrucciones:
- Elabora un GLOSARIO en hojas de cuaderno con cada uno de los siguientes conceptos, guíate en el ejemplo que se proporciona en la siguiente tabla para que puedas realizar la actividad. Puedes guiarte de tu libro, de uno de biblioteca o de uno que lleves de tu casa.
CONCEPTO | CITA TEXTUAL | CONCEPTO (CON TUS PROPIAS PALABRAS) | IMAGEN DE FIGURA O SIMBOLO |
| Es un concepto de la Geometría para referirse al espacio comprendido entre la intersección de dos líneas que parten de un mismo punto o vértice, y que es medido en grados | Abertura que hay entre dos líneas. | [pic 3] |
| In plane geometry, a three-sided polygon is called a triangle, trigonoid or trigonoid. The points common to each pair of sides are called vertices of the triangle. A triangle has three interior angles, three congruent parts of exterior angles, three sides and three vertices among other elements | Is a geometric figure | [pic 4] |
| Oblique Triangle is the one that does not have any 90° angle.The elements of an oblique triangle are the three angles A, B and C and the three respective sides, opposite to the previous ones, a, b and c. | Is a triangle that doesn´t have any 90° angle | [pic 5] |
| In geometry, any triangle that has a right angle, ia 90-degree angle, is called a right triangle. The ratios between the lengths of the sides of a right triangle is a focus of plane trigonometry. | This triangle always have a 90° angle | [pic 6] |
| In geometry, an equilateral triangle is a regular polygon, i.e. it has three equal sides. In traditional Euclidean geometry, equilateral triangles are also equiangular, i.e. the three internal angles are equal. | Is a triangle that have three equal sides | [pic 7] |
| The hypotenuse is the side opposite the right angle in a right triangle, being its longest side. | Is the longest side of a triangle | [pic 8] |
| The opposite leg is one of the two sides of lesser length of the right triangle. It is defined as the one that lies on the opposite side of the reference angle (excluding the right angle). Another way to explain it is that the opposite cathetus of angle ∝ is the one that lies opposite the angle ∝. | The opposite side of the angle of reference | [pic 9] |
| Adjacent side is the side that is part of the angle being referred to. Opposite side is the side that is not part of the angle being referred to and is opposite it. | Is the side that is part of the angle being referred to | [pic 10] |
| In this sense, the notable angles are those that have values that appear very often in everyday life. These angles are those of 30°, 45° and 60° and, secondly, the angles of 0°, 90°, 180°, 270° and 360°. | Are the most common angle | [pic 11] |
| The sine of angle B is the ratio of the opposite leg of the angle to the hypotenuse. It is expressed by sin. | The oppsite leg of the angle | [pic 12] |
| In mathematics, cosine is an even and continuous function with period 2 and a transcendent function. Its name is abbreviated cos. | Is a continuous function with period | [pic 13] |
| The tangent to a curve at a point P is a line that touches the curve only at that point, called the point of tangency. It can be said that the tangent forms a zero angle with the curve in the vicinity of that point. | The lines that touch the curve | [pic 14] |
...