Identificar el rango de la función
Enviado por kenia126 • 7 de Septiembre de 2014 • Informe • 355 Palabras (2 Páginas) • 255 Visitas
Las funciones tienen gran cantidad de aplicaciones, en la ingeniería por ejemplo cuando la resistencia de un material está en función de las horas de trabajo, en la desintegración radiactiva cuando esta depende del tiempo transcurrido, así como las tasas de crecimiento poblacional, en los cálculos de tasas de interés, etc.
negativo, lo cual no es posible; no es posible hallar dentro de los Reales un número que satisfaga la expresión; por lo tanto el dominio de la función está constituido por todos los números mayores o iguales que cero; expresado como:
En general se pueden seguir las siguientes recomendaciones para obtener el dominio de una función o de una expresión algebraica:
No puede haber una raíz cuadrada ( ó cualquier raíz par ) negativa, pues se trataría de un número imaginario que no hace parte de los Reales.
Un fraccionario no puede contener por denominador cero, pues la expresión queda indeterminada.
El rango de una función, está determinado por todos los valores que pueden resultar al evaluar una función. Son los valores obtenidos para la variable dependiente (y). También se puede expresar como todos los valores de salida de la función.
Por ejemplo:
Si x=2, evaluamos f(2) = 2 ^2 = 4. Y así podemos hacerlo con cualquier número, positivo o negativo. Como x está elevada al cuadrado todos los valores resultantes (es decir de salida) son positivos. Con lo anterior se obtiene que el rango está conformado por el cero y todos los números positivos.
Al graficar la función se obtiene:
Gráfica de la función cuadrática
Para obtener el rango desde el punto de vista gráfico, debemos poner nuestra atención en el eje y. Se puede ver que el rango está dado por valores mayores o iguales que cero, pues la parábola que lo representa esta ubicada del eje x hacia arriba. Con esto, y lo explicado anteriormente el rango es:
mayor o igual
Las funciones tienen gran cantidad de aplicaciones, en la ingeniería por ejemplo cuando la resistencia de un material está en función de las horas de trabajo, en la desintegración radiactiva cuando esta depende del tiempo transcurrido, así como las tasas de crecimiento poblacional, en los cálculos de tasas de interés, etc.
...