ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Inercia Polar


Enviado por   •  24 de Julio de 2013  •  430 Palabras (2 Páginas)  •  397 Visitas

Página 1 de 2

Momentos de la inercia

El momento de inercia refleja la distribución de masa de un cuerpo o de un sistema de partículas en rotación, respecto a un eje de giro. El momento de inercia sólo depende de la geometría del cuerpo y de la posición del eje de giro; pero no depende de las fuerzas que intervienen en el movimiento.

El momento de inercia desempeña un papel análogo al de la masa inercial en el caso del movimiento rectilíneo y uniforme. Es el valor escalar del momento angular longitudinal de un sólido rígido.

Ecuaciones del momento de inercia

¿Cuál de estos giros resulta más difícil?

El momento de inercia de un cuerpo indica su resistencia a adquirir una aceleración angular.

Dado un sistema de partículas y un eje arbitrario, el momento de inercia del mismo se define como la suma de los productos de las masas de las partículas por el cuadrado de la distancia r de cada partícula a dicho eje. Matemáticamente se expresa como:

Para un cuerpo de masa continua (Medio continuo), se generaliza como:

El subíndice V de la integral indica que se integra sobre todo el volumen del cuerpo. Se resuelve a través de una integral triple.

Este concepto desempeña en el movimiento de rotación un papel análogo al de masa inercial en el caso del movimiento rectilíneo y uniforme. La masa es la resistencia que presenta un cuerpo a ser acelerado en traslación y el Momento de Inercia es la resistencia que presenta un cuerpo a ser acelerado en rotación. Así, por ejemplo, la segunda ley de Newton: tiene como equivalente para la rotación:

Donde:

• es el momento aplicado al cuerpo.

• es el momento de inercia del cuerpo con respecto al eje de rotación y

• es la aceleración angular.

Siempre y cuando la distancia con respecto al sistema de referencia permanezca constante.

La energía cinética de un cuerpo en movimiento con velocidad v es , mientras que la energía cinética de un cuerpo en rotación con velocidad angular ω es , donde es el momento de inercia con respecto al eje de rotación.

La conservación de la cantidad de movimiento o momento lineal tiene por equivalente la conservación del momento angular :

El vector momento angular, en general, no tiene la misma dirección que el vector velocidad angular . Ambos vectores tienen la misma dirección si el eje de giro es un eje principal de inercia. Cuando un eje es de simetría entonces es eje principal de inercia y entonces un giro alrededor de ese eje conduce a un momento angular dirigido también a lo largo de ese eje.

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com