Integrales Parciales
Enviado por amedinad • 27 de Noviembre de 2014 • 228 Palabras (1 Páginas) • 345 Visitas
Derivadas Parciales
Sea una función de varias variables la derivada de respecto a su j-ésima variable se define y denota como
Ejemplos
1. Determinar las derivadas parciales de primer orden por definición:
a.
b.
c.
2. Determinar las derivadas parciales de primer orden de:
a.
b.
c.
d.
3. Determinar las valores de en los puntos y ,luego determinar en cada caso:
a. Sin en y
b. Sin en y
Gradiente de una función
Sean una función de varias variables el gradiente de la función se define y denota como
Donde: es el operador nabla
Derivada direccional
Sean una función de varias variables la derivada direccional de en la dirección del vector unitario se define y denota como:
Ejemplo
1. Determinar las derivadas direccionales de
a.
b. , además determinar
c. , además determinar
d. , además determinar
2. Se tiene una caja sin tapa cuyas dimensiones son 4cm de alto, 6cm, y 12cm la base. Determinar el error cometido al calcular el área lateral de dicha caja si al tomar las medidas se cometieron un error de 0.1cm 0.02cm y 0,01cm respectivamente
a.
...