ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Intro De Espectroscop


Enviado por   •  29 de Abril de 2014  •  1.682 Palabras (7 Páginas)  •  339 Visitas

Página 1 de 7

PRACTICA 7

FUNDAMENTOS DE ESPECTROFOTOMETRIA Y CURVA PATRON

Objetivo

Conocer y aplicar los fundamentos de la espectrofotometría para la determinación de concentraciones en soluciones. Así como seleccionar la longitud de onda apropiada para medir la absorbancia y construir una curva patrón.

Introducción

Desde hace muchos años se ha usado el color como ayuda para reconocer las sustancias químicas; al reemplazar el ojo humano por otros detectores de radiación se puede estudiar la absorción de sustancias, no solamente en la zona del espectro visible, sino también en ultravioleta e infrarrojo. Se denomina espectrofotometría a la medición de la cantidad de energía radiante que absorbe un sistema químico en función de la longitud de onda de la radiación, y a las mediciones a una determinada longitud de onda, también permite relacionar éstas con los niveles de energía implicados en una transición electrónica.

La teoría ondulatoria de la luz propone la idea de que un haz de luz es un flujo de cuantos de energía llamados fotones; la luz de una cierta longitud de onda está asociada con los fotones, cada uno de los cuales posee una cantidad definida de energía.

Transmitancia: I0 ⇒ Ǖ ⇒I, donde I0 es mayor que I, se muestra un haz de radiación paralela antes y después de que ha pasado a través de una capa de solución que tiene un espesor de b cm y una concentración c de una especie absorbente. Como consecuencia de interacciones entre los fotones y las partículas absorbentes, la potencia del haz es atenuada. La transmitancia T de la solución es entonces la fracción de la radiación incidente transmitida por la solución: T=I/I0, la transmitancia se expresa a menudo como porcentaje multiplicándola por 100.

Absorbancia: La absorbancia A de una solución se define mediante la ecuación: A = −log T = logI/I0 .

La transmitancia y la absorbancia se miden en un instrumento llamado espectrofotómetro, la solución del analito se debe contener en algún recipiente transparente, tubo o celda.

El espectrómetro es un instrumento de medición que analiza el tipo de espectro que emite una fuente o que es absorbida por una sustancia que se encuentra en el camino de la luz que emite una fuente. Estos espectros de emisión o de absorción son como una huella digital de las sustancias que forman a nuestra naturaleza. El funcionamiento del espectrómetro está basado en la descomposición de la luz en las diferentes longitudes de onda que la componen a partir del fenómeno de refracción que sucede en un prisma o a partir del fenómeno de difracción de la luz que se produce en una red difracción. Además este instrumento mide los ángulos en los cuales se presentan los máximos del patrón de difracción. Estos ángulos son diferentes y característica de la naturaleza de la fuente que emite la luz. Las componentes básicas de un espectrómetro es un conjunto de lentes, un colimador, una rejilla de difracción y un ocular, anteriormente detectar el espectro se hacía a simple vista, pero hoy en día se pueden usar sensores de luz que marcan los máximos y mínimos o también se pueden fotografiar los espectros.

Ocurre reflexión en las interfases: aire-pared, tanto como en la pared-solución. La atenuación del haz resultante es sustancial. Además, la atenuación de un haz puede ocurrir por dispersión de las moléculas grandes y a veces por absorción de las paredes del recipiente. Para compensar estos efectos, la potencia del haz transmitido por la solución del analito es comparada comúnmente con la potencia del haz transmitido por una celda idéntica que contiene solamente solvente. Una absorbancia experimental que se aproxima mucho a la absorbancia verdadera se obtiene con la ecuación: A = log(I solvente)/(I solución )

Los espectrofotómetros, están a menudo, equipados con un dispositivo que tiene una escala lineal que se extiende de 0 a 100%. De manera de hacer tal instrumento de lectura directa en porcentaje de transmitancia, se efectúan dos ajustes preliminares, llamados 0%T y 100%T.

Cuando la celda del solvente es reemplazada por la celda que contiene la muestra, la escala da la transmitancia porcentual. Los instrumentos actuales poseen un sistema electrónico que realiza la operación matemática y da la respuesta directamente absorbancia. También hay que hacer una calibración previa con el solvente o blanco.

Ley de Beer: Considerando un bloque de materia absorbente (sólido, líquido o gas). Un haz de radiación monocromática paralelo con intensidad I0 llega al bloque perpendicular a la superficie; luego pasa a través de la longitud b del material, que contiene n partículas absorbentes (átomos, iones o moléculas), la intensidad del haz disminuye a I como resultado de la absorción. Consideremos ahora una sección transversal del bloque que tiene un área S (X x Y) y un espesor infinitesimal dx. Dentro de esta sección hay dn partículas absorbentes; asociada a cada partícula podemos imaginar una superficie en que ocurrirá la captura del fotón. Esto es, si un fotón alcanza una de esas áreas por casualidad, ocurrirá inmediatamente la absorción. El área total de esas superficies de captura dentro de la sección se designa ds; la relación del área de captura al área total es ds/S.

En un promedio estadístico, esta relación representa la probabilidad para la captura de fotones dentro de la sección.

La intensidad del haz que entra en la sección, Ix es proporcional al número de fotones por cm2 y por segundo, y dIx representa la cantidad removida por segundo dentro de la sección, la fracción absorbida es entonces -dIx/Ix y esta relación también es la probabilidad promedio por captura.

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 6 páginas más »
Disponible sólo en Clubensayos.com