ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La ley de Malthu


Enviado por   •  28 de Octubre de 2013  •  Informe  •  347 Palabras (2 Páginas)  •  277 Visitas

Página 1 de 2

La ley de Malthus predecía por tanto la ocurrencia en el futuro de un fenómeno llamado castástrofe malthusiana en el que los recursos alimentarios serían claramente insostenibles para mantener a la población mundial y sobrevendrían graves guerras y hambrunas que diezmarían a la humanidad. Esta sección formaliza las ideas de Malthus en forma de ecuaciones diferenciales y calcula en función de ciertos parámetros el tiempo de ocurrencia de la catástrofe malthusiana en donde la cantidad de alimentos disponibles no es suficiente para sostener a toda la población.

Expresado en ecuaciones diferenciales el argumento de Malthus es el siguiente: Si P(t) es la población en el año t que crecería exponencialmente (progresión geométrica) y A(t) la cantidad total de alimentos que crecería linealmente (progresión aritmética) las tasas de aumento serían:

(1)

\frac{dP(t)}{dt} = r P(t), \qquad \frac{dA(t)}{dt} = k A_0

La solución de las dos ecuaciones anteriores lleva a que la cantidad de alimento por persona viene dada por:

a(t) = \frac{A(t)}{P(t)} = \frac{A_0(1+k t)}{P_0 e^{r t}} =a_0(1+k t)e^{-rt}

Donde P0 es la población inicial y A0 es la dotación inicial de alimentos (y, por tanto, a0 = A0/P0 la dotación de alimentos por persona inicial). Supongamos ahora que la cantidad mínima de alimentos o ingesta mínima por persona es amin, entonces si las hipótesis de Malthus hubieran sido correctas para todo instante del tiempo, la cantidad de alimentos por persona se habría reducido hasta ser inferior a la cantidad mínima de alimentos por persona en el instante de la catástrofe malthusiana tcm:

(2)

a(t_{cm}) = a_{min} \quad \Rightarrow \quad

\frac{1+k t_{cm}}{e^{r t_{cm}}} \le \frac{a_{min}}{a_0}

Puede verse que para cualesquiera valores positivos de r, k, A0, P0 y amin existe un instante del tiempo dado por tcm en el que se produce indefectiblemente la catástrofe malthusiana, si las ecuaciones de evolución (1) no cambian en todo el proceso. La solución de (2) viene dada mediante la función W de Lambert:

(3)

t_{cm} = -\frac{1}{r} -\frac{1}{k}W\left(-r\frac{a_{min}}{a_0}e^{-r/k}\right)

Esta última expresión da el tiempo para el cual se produce la catástrofe malthusiana, y se puede ver que ese momento llega antes cuanto mayor es la tasa crecimiento exponencial r.

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com