Lab De Enlaces Quimicos
Enviado por xXfolkenXx • 5 de Septiembre de 2011 • 4.166 Palabras (17 Páginas) • 1.875 Visitas
1. INTRODUCCIÓN
La materia está conformada por moléculas y estas a su vez por átomos unidos entre sí en proporciones variables ¿pero qué es lo que mantiene unidos a estos átomos?
Los enlaces químicos son fuertes atracciones eléctricas que mantienen unidos entre si a los átomos o iones. Un enlace químico es el proceso físico responsable de las interacciones atractivas entre átomos y moléculas, y que confiere estabilidad a los compuestos químicos diatómicos y poliatómicos. La explicación de tales fuerzas atractivas es un área compleja que está descrita por las leyes de la electrodinámica cuántica1.
Todos los enlaces pueden ser explicados por la teoría cuántica, pero, en la práctica, algunas reglas de simplificación les permiten a los químicos predecir la fuerza, direccionalidad y polaridad de los enlaces. La regla del octeto y la teoría de repulsión de pares de electrones de la capa de valencia son dos ejemplos. Las teorías más sofisticadas, como la teoría del enlace de valencia, que incluye la hibridación de orbitales y la resonancia, y el método de combinación lineal de orbitales atómicos dentro de la teoría de los orbitales moleculares, que incluye a la teoría del campo de los ligantes. La electrostática 2 es usada para describir polaridades de enlace y los efectos que ejerce en las sustancias químicas.
En el laboratorio se determinara experimentalmente la conductividad de algunos materiales usando un “equipo de conductividad eléctrica” formado por un circuito abierto con un indicador de cierre (lámpara de luz).Esto en función del enlace que posean dichos materiales.
1.- La electrodinámica cuántica (QED acrónimo de Quantum Electrodynamics) es la teoría cuántica del campo electromagnético. QED describe los fenómenos que implican las partículas eléctricamente cargadas que obran recíprocamente por medio de la fuerza electromagnética.
2.- La electrostática es la rama de la física que estudia los fenómenos eléctricos producidos por distribuciones de cargas estáticas, esto es, el campo electrostático de un cuerpo cargado.
2. HISTORIA
Las primeras especulaciones respecto a la naturaleza del enlace químico son tan tempranas como en el siglo XII, se suponía que ciertos tipos de especies químicas estaban unidas entre sí por un tipo de afinidad química. En 1704, Isaac Newton esbozó su teoría de enlace atómico, en "Query 31" de su Opticks, en la cual se propone que los átomos se unen entre si por alguna "fuerza". Específicamente, después de investigar varias teorías populares, en boga en aquel tiempo, de cómo los átomos se podía unir unos a otros, por ejemplo, "átomos enganchados", "átomos pegados unos a otros por reposo", o "unidos por movimientos conspirantes".
En 1819, a raíz de la invención de la pila voltaica, Jöns Jakob Berzelius desarrolló una teoría de combinación química, introduciendo indirectamente el carácter electropositivo y electronegativo de los átomos combinantes. A mediados del siglos XIX, Edward Franklandn, A.M. Butlerov y Hermann Kolbe, ampliando la teoría de radicales, desarrollaron la teoría de valencia, originalmente llamado "poder combinante" en que los compuestos se mantenía unidos debido a la atracción entre polos positivo y negativo. En 1916, el químico Gilbert N. Lewis desarrolló el concepto de enlace de par de electrones, en el que dos átomos pueden compartir uno y seis electrones, formando el enlace de un solo electrón, enlace simple, enlace doble, o enlace triple:
En las propias palabras de Lewis:
Un electrón puede formar parte de las envolturas de dos átomos diferentes y no puede decirse que pertenezca a uno exclusivamente.
El mismo año, Walther Kossel lanzó una teoría similar a la de Lewis, con la diferencia de que su modelo asumía una transferencia completa de electrones entre los átomos, con lo que era un modelo de enlace iónico. Tanto Lewis y Kossel estructuraron sus modelos de enlace a partir de la regla de Abegg (1904).
En 1927, el físico danés Oyvind Burrau derivó la primera descripción cuántica matemáticamente completa de un enlace químico simple, el producido por un electrón en el ion de hidrógeno molecular (dihidrogenilio), H2+.Este trabajo mostró que la aproximación cuántica a los enlaces químicos podrían ser correctas fundamental y cualitativamente, pero los métodos matemáticos usados no podrían extenderse a moléculas que contuvieran más de un electrón. Una aproximación más práctica, aunque menos cuantitativa, fue publicada en el mismo año por Walter Heitler y Fritz London. El método de Heitler-London forma la base de lo que ahora se denomina teoría del enlace de valencia. En 1929, Sir John Lennard-Jones introdujo el método de combinación lineal de orbitales atómicos (CLOA o dentro de la teoría de orbitales moleculares, sugiriendo también métodos para derivar las estructuras electrónicas de moléculas de F2 (flúor) y las moléculas de O2 (oxígeno, a partir de principios cuánticos básicos.
Esta teoría de orbital molecular representó un enlace covalente como un orbital formado por combinación de los orbitales atómicos de la mecánica cuántica de Schrödinger que habían sido hipotetizados por los electrones en átomos solitarios. Las ecuaciones para los electrones de enlace en átomos multielectrónicos no podrían ser resueltos con perfección matemática (esto es, analíticamente), pero las aproximaciones para ellos aún producen muchas predicciones y resultados cualitativos buenos. Muchos cálculos cuantitativos en química cuántica moderna usan tanto las teorías de orbitales moleculares o de enlace de valencia como punto de partida, aunque una tercera aproximación, la teoría del funcional de la densidad, se ha estado haciendo más popular en años recientes.
En 1935, H.H. James y A.S. Coolidge llevó a cabo un cálculo sobre la molécula de dihidrógeno que, a diferencia de todos los cálculos previos que usaban funciones sólo de la distancia de los electrones a partir del núcleo atómico, usó funciones que sólo adicionaban explícitamente la distancia entre los dos electrones. Con 13 parámetros ajustables, ellos obtienen el resultado muy cercano al resultado experimental para la energía de disociación de enlace. Posteriores extensiones usaron hasta 54 parámetros y producen gran concordancia con los experimentos. Este cálculo convenció a la comunidad científica que la teoría cuántica podría concordar con los experimentos. Sin embargo, esta aproximación no tiene relación física con la teoría de enlace de valencia y orbitales moleculares y es difícil de extender a moléculas más grandes.
...