Magnitudes Fisicas Fundamentales
Enviado por • 24 de Enero de 2013 • 2.620 Palabras (11 Páginas) • 1.127 Visitas
MAGNITUDES FISICAS FUNDAMENTALES
Denominamos magnitudes físicas a todas aquellas propiedades de los cuerpos del Universo que se pueden medir, es decir, a aquellas a las cuales podemos otorgar un número o valor; se representan por un símbolo, que suele ser una letra. Gracias a su combinación, dan origen a las magnitudes derivadas. Tres de las magnitudes fundamentales más importantes son la masa, la longitud y el tiempo, pero en ocasiones en física también nos pone como agregadas a la temperatura, la intensidad luminosa, la cantidad de sustancia y la intensidad de corriente.
Las unidades usadas en el SI para estas magnitudes fundamentales son las siguientes:
• Para la masa se usa el kilogramo (kg)
• Para la longitud se usa el metro (m)
• Para el tiempo se usa el segundo (s)
• Para la temperatura el Kelvin (K)
• Para la Intensidad de corriente eléctrica el ampere (A)
• Para la cantidad de sustancia el mol (mol)
• Para la Intensidad luminosa la candela (cd)
EL ESPACIO
Significa todo lo que nos rodea y a diferentes conceptos en distintas disciplinas. Generalmente se refiere al espacio físico, el espacio geográfico o el espacio exterior
El espacio físico es el espacio donde se encuentran los objetos y en el que los eventos que ocurren tienen una posición y dirección relativas. El espacio físico es habitualmente concebido con tres dimensiones lineales, aunque los físicos modernos usualmente lo consideran, con el tiempo, como una parte de un infinito continuo de cuatro dimensiones conocido como espacio-tiempo, que en presencia de materia es curvo. El concepto de espacio es considerado de fundamental importancia para una comprensión del universo físico aunque haya continuos desacuerdos entre filósofos acerca de si es una entidad, una relación entre entidades, o parte de un marco conceptual.
El espacio en física clásica es un lugar que contiene la materia, a este lugar se le asigna referencias para poder ubicar los puntos en ese espacio, a estas referencias le llamamos coordenadas, que siempre son ortogonales, para que mediante un sistema de cuadricula, podamos fijar (determinar) cualquier punto con las referencias (magnitudes).
En relatividad, el espacio es algo que se deforma, estira y contrae, ya no contiene la materia sino que es la materia, cuando el espacio se deforma. Es decir, la materia es el espacio deformado.
MATERIA
Materia es todo aquello que tiene localización espacial, posee una cierta cantidad de energía, y está sujeto a cambios en el tiempo y a interacciones con aparatos de medida. En física y filosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, entre otros.
La materia másica está jerárquicamente organizada en varios niveles y subniveles. La materia másica puede ser estudiada desde los puntos de vista macroscópico y microscópico. Según el nivel de descripción adoptado debemos adoptar descripciones clásicas o descripciones cuánticas. Una parte de la materia másica, concretamente la que compone los astros sub-enfriados y las estrellas, está constituida por moléculas, átomos, e iones. Cuando las condiciones de temperatura lo permite la materia se encuentra condensada.
MASA
La masa, en física, es una medida de la cantidad de materia que posee un cuerpo. Es una propiedad intrínseca de los cuerpos que determina la medida de la masa inercial y de la masa gravitacional. La unidad utilizada para medir la masa en el Sistema Internacional de Unidades es el kilogramo (kg). Es una magnitud escalar.
No debe confundirse con el peso, que es una magnitud vectorial que representa una fuerza. Tampoco debe confundirse con la cantidad de sustancia, cuya unidad en el Sistema Internacional de Unidades es el mol.
En la teoría especial de la relatividad la "masa" se refiere a la masa inercial de un objeto medida en el sistema de referencia en el que está en reposo (conocido como "sistema de reposo"). El método anterior para obtener la masa inercial sigue siendo válido, siempre que la velocidad del objeto sea mucho menor que la velocidad de la luz, de forma que la mecánica clásica siga siendo válida.
TIEMPO
El tiempo es una magnitud física con la que medimos la duración o separación de acontecimientos, sujetos a cambio, de los sistemas sujetos a observación; esto es, el período que transcurre entre el estado del sistema cuando éste presentaba un estado X y el instante en el que X registra una variación perceptible para un observador (o aparato de medida).
El tiempo permite ordenar los sucesos en secuencias, estableciendo un pasado, un futuro y un tercer conjunto de eventos ni pasados ni futuros respecto a otro. En mecánica clásica esta tercera clase se llama "presente" y está formada por eventos simultáneos a uno dado.
En mecánica relativista el concepto de tiempo es más complejo: los hechos simultáneos ("presente") son relativos. No existe una noción de simultaneidad independiente del observador.
Su unidad básica en el Sistema Internacional es el segundo, cuyo símbolo es (debido a que es un símbolo y no una abreviatura, no se debe escribir con mayúscula, ni como "seg", ni agregando un punto posterior).
MEDICIÓN
La medición es un proceso básico de la ciencia que consiste en comparar un patrón seleccionado con el objeto o fenómeno cuya magnitud física se desea medir para ver cuántas veces el patrón está contenido en esa magnitud.
Los procesos de medición de magnitudes físicas que no son dimensiones geométricas entrañan algunas dificultades adicionales, relacionadas con la precisión y el efecto provocado sobre el sistema. Así cuando se mide alguna magnitud física se requiere en muchas ocasiones que el aparato de medida interfiera de alguna manera sobre el sistema físico en el que se debe medir algo o entre en contacto con dicho sistema. En esas situaciones se debe poner mucho cuidado, en evitar alterar seriamente el sistema observado. De acuerdo con la mecánica clásica no existe un límite teórico a la precisión o el grado de perturbación que dicha medida provocará sobre el sistema (esto contrasta seriamente con la mecánica cuántica o con ciertos experimentos en ciencias sociales donde el propio experimento de medición puede interferir en los sujetos participantes).
Por
...