ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Magnitudes escalares


Enviado por   •  25 de Febrero de 2015  •  Informe  •  400 Palabras (2 Páginas)  •  201 Visitas

Página 1 de 2

U.A.N.L.

PREPA No.5

Materia: Biología II

NOMBRE: Alejandro Lozano Chacón

MATRICULA: 1748110

TEMA: ACTIVIDAD DE APRENDIZAJE

GRUPO: 201

Mediciones

Introducción

Entre las distintas propiedades medibles puede establecerse una clasificación básica. Un grupo importante de ellas quedan perfectamente determinadas cuando se expresa su cantidad mediante un número seguido de la unidad correspondiente. Este tipo de magnitudes reciben el nombre de magnitudes escalares. La longitud, el volumen, la masa, la temperatura, la energía, son sólo algunos ejemplos. Sin embargo, existen otras que precisan para su total definición que se especifique, además de los elementos anteriores, una dirección o una recta de acción y un sentido: son las llamadas magnitudes vectoriales o dirigidas. La fuerza es un ejemplo claro de magnitud vectorial, pues sus efectos al actuar sobre un cuerpo dependerán no sólo de su cantidad, sino también de la línea a lo largo de la cual se ejerza su acción.

Al igual que los números reales son utilizados para representar cantidades escalares, las cantidades vectoriales requieren el empleo de otros elementos matemáticos diferentes de los números, con mayor capacidad de descripción. Estos elementos matemáticos que pueden representar intensidad, dirección y sentido se denominan vectores. Las magnitudes que se manejan en la vida diaria son, por lo general, escalares. El dependiente de una tienda de ultramarinos, el comerciante o incluso el contable, manejan masas, precios, volúmenes, etc., y por ello les es suficiente saber operar bien con números. Sin embargo, el físico, y en la medida correspondiente el estudiante de física, al tener que manejar magnitudes vectoriales, ha de operar, además, con vectores.

En las Ciencias Físicas tanto las leyes como las definiciones relacionan matemáticamente entre sí grupos, por lo general amplios, de magnitudes. Por ello es posible seleccionar un conjunto reducido pero completo de ellas de tal modo que cualquier otra magnitud pueda ser expresada en función de dicho conjunto. Esas pocas magnitudes relacionadas se denominan magnitudes fundamentales, mientras que el resto que pueden expresarse en función de las fundamentales reciben el nombre de magnitudes derivadas.

Cuando se ha elegido ese conjunto reducido y completo de magnitudes fundamentales y se han definido correctamente sus unidades correspondientes, se dispone entonces de un sistema de unidades. La definición de unidades dentro de un sistema se atiene a diferentes criterios. Así la unidad ha de ser constante como corresponde a su función de cantidad de referencia equivalente para las diferentes mediciones, pero también ha de ser reproducible con relativa facilidad en un laboratorio.

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com