Metodo De Costos Minimos
Enviado por ozkr120 • 6 de Mayo de 2013 • 2.010 Palabras (9 Páginas) • 1.483 Visitas
MÉTODO DEL COSTO MÍNIMO
El método del costo mínimo o de los mínimos costos es un algoritmo desarrollado con el objetivo de resolver problemas de transporte o distribución, arrojando mejores resultados que métodos como el de la esquina noroeste, dado que se enfoca en las rutas que presentan menores costos. El diagrama de flujo de este algortimo es mucho más sencillo que los anteriores dado que se trata simplememente de la asignación de la mayor cantidad de unidades posibles (sujeta a las restricciones de oferta y/o demanda) a la celda menos costosa de toda la matriz hasta finalizar el método.
ALGORITMO DE RESOLUCIÓN DEL COSTO MÍNIMO
PASO 1:
De la matriz se elige la ruta (celda) menos costosa (en caso de un empate, este se rompe arbitrariamente) y se le asigna la mayor cantidad de unidades posible, cantidad que se ve restringida ya sea por las restricciones de oferta o de demanda. En este mismo paso se procede a ajustar la oferta y demanda de la fila y columna afectada, restandole la cantidad asignada a la celda.
PASO 2:
En este paso se procede a eliminar la fila o destino cuya oferta o demanda sea 0 después del "Paso 1", si dado el caso ambas son cero arbitrariamente se elige cual eliminar y la restante se deja con demanda u oferta cero (0) según sea el caso.
PASO 3:
Una vez en este paso existen dos posibilidades, la primera que quede un solo renglón o columna, si este es el caso se ha llegado al final el método, "detenerse".
La segunda es que quede más de un renglón o columna, si este es el caso iniciar nuevamente el "Paso 1".
EJEMPLO DEL MÉTODO DEL COSTO MÍNIMO
Por medio de este método resolveremos el problema de transporte propuesto y resuelto en módulos anteriores mediante programación lineal.
EL PROBLEMA
Una empresa energética colombiana dispone de cuatro plantas de generación para satisfacer la demanda diaria eléctrica en cuatro ciudades, Cali, Bogotá, Medellín y Barranquilla. Las plantas 1,2,3 y 4 pueden satisfacer 80, 30, 60 y 45 millones de KW al día respectivamente. Las necesidades de las ciudades de Cali, Bogotá, Medellín y Barranquilla son de 70, 40, 70 y 35 millones de Kw al día respectivamente.
Los costos asociados al envío de suministro energético por cada millón de KW entre cada planta y cada ciudad son los registrados en la siguiente tabla.
Bryan Antonio Salazar López
Formule un modelo de programación lineal que permita satisfacer las necesidades de todas las ciudades al tiempo que minimice los costos asociados al transporte.
SOLUCIÓN PASO A PASO
Bryan Antonio Salazar López
Luego esa cantidad asignada se resta a la demanda de Bogotá y a la oferta de la "Planta 3", en un proceso muy lógico. Dado que Bogotá se queda sin demanda esta columna desaparece, y se repite el primer proceso.
Bryan Antonio Salazar López
Nuevo proceso de asignación
Bryan Antonio Salazar López
Nuevo proceso de asignación
Bryan Antonio Salazar López
Nuevo proceso de asignación
Bryan Antonio Salazar López
Una vez finalizado el cuadro anterior nos daremos cuenta que solo quedará una fila, por ende asignamos las unidades y se ha terminado el método.
Bryan Antonio Salazar López
El cuadro de las asignaciones (que debemos desarrollarlo paralelamente) queda así:
Bryan Antonio Salazar López
Los costos asociados a la distribución son:
Bryan Antonio Salazar López
En este caso el método del costo mínimo presenta un costo total superior al obtenido mediante Programación Lineal y el Método de Aproximación Vogel, sin embargo comunmente no es así, además es simple de desarrollar y tiene un mejor rendimiento en cuanto a resultados respecto al Método de la Esquina Noroeste.
MÉTODO DE LA ESQUINA NOROESTE
El método de la esquina Noroeste es un algoritmo heurístico capaz de solucionar problemas de transporte o distribución mediante la consecución de una solución básica inicial que satisfaga todas las restricciones existentes sin que esto implique que se alcance el costo óptimo total.
Este método tiene como ventaja frente a sus similares la rapidez de su ejecución, y es utilizado con mayor frecuencia en ejercicios donde el número de fuentes y destinos sea muy elevado. Su nombre se debe al génesis del algoritmo, el cual inicia en la ruta, celda o esquina Noroeste. Es común encontrar gran variedad de métodos que se basen en la misma metodología de la esquina Noroeste, dado que podemos encontrar de igual manera el método e la esquina Noreste, Sureste o Suroeste.
ALGORITMO DE RESOLUCIÓN DE LA ESQUINA NOROESTE
Se parte por esbozar en forma matricial el problema, es decir, filas que representen fuentes y columnas que representen destinos, luego el algoritmo debe de iniciar en la celda, ruta o esquina Noroeste de la tabla (esquina superior izquierda).
Bryan Antonio Salazar López
PASO 1:
En la celda seleccionada como esquina Noroeste se debe asignar la máxima cantidad de unidades posibles, cantidad que se ve restringida ya sea por las restricciones de oferta o de demanda. En este mismo paso se procede a ajustar la oferta y demanda de la fila y columna afectada, restandole la cantidad asignada a la celda.
PASO 2:
En este paso se procede a eliminar la fila o destino cuya oferta o demanda sea 0 después del "Paso 1", si dado el caso ambas son cero arbitrariamente se elige cual eliminar y la restante se deja con demanda u oferta cero (0) según sea el caso.
PASO 3:
Una vez en este paso existen dos posibilidades, la primera que quede un solo renglón o columna, si este es el caso se ha llegado al final el método, "detenerse".
La segunda es que quede más de un renglón o columna, si este es el caso iniciar nuevamente el "Paso 1".
EJEMPLO DEL
...