Metodos Numericos
Enviado por xorizo1 • 28 de Enero de 2015 • 243 Palabras (1 Páginas) • 165 Visitas
Aunque, por lo común, determinar las cifras significativas de un número es un
procedimiento sencillo, en algunos casos genera cierta confusión. Por ejemplo, los ceros
no siempre son cifras significativas, ya que pueden usarse sólo para ubicar el punto
decimal: los números 0.00001845, 0.0001845 y 0.001845 tienen cuatro cifras significativas.
Asimismo, cuando se incluye ceros en números muy grandes, no queda claro
cuántos son significativos. Por ejemplo, el número 45 300 puede tener tres, cuatro o
cinco dígitos significativos, dependiendo de si los ceros se conocen o no con exactitud.
La incertidumbre se puede eliminar utilizando la notación científica, donde 4.53 × 104,
4.530 × 104, 4.5300 × 104 muestran, respectivamente, que el número tiene tres, cuatro y
cinco cifras significativas.
El concepto de cifras significativas tiene dos implicaciones importantes en el estudio
de los métodos numéricos.
1. Como se mencionó en el problema de la caída del paracaidista, los métodos numéricos
dan resultados aproximados. Por lo tanto, se deben desarrollar criterios
para especificar qué tan confiables son dichos resultados. Una manera de hacerlo
es en términos de cifras significativas. Por ejemplo, es posible afirmar que la
aproximación es aceptable siempre y cuando sea correcta con cuatro cifras significativas.
2. Aunque ciertas cantidades tales como p, e, o 7 representan cantidades específicas,
no se pueden expresar exactamente con un número finito de dígitos. Por ejemplo,
p = 3.141592653589793238462643...
hasta el infinito. Como las computadoras retienen sólo un número finito de cifras
significativas, tales números jamás se podrán representar con exactitud. A la omisión
del resto de cifras significativas se le conoce como error de redondeo.
...