ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Micro


Enviado por   •  30 de Junio de 2014  •  Trabajo  •  1.409 Palabras (6 Páginas)  •  237 Visitas

Página 1 de 6

INTRODUCCIÓN

En el ámbito de la investigación en didáctica de las matemáticas es bastante conocido que la enseñanza habitual del cálculo se basa en la transmisión de conocimientos con un énfasis muy marcado en el desarrollo de habilidades algebraicas y se desatiende el discernimiento intelectual para la comprensión de ideas, nociones y conceptos. Tal situación ha sido abordada en diversos trabajos en los que se muestran desde argumentaciones teóricas hasta propuestas para mejorar la calidad del aprendizaje, las cuales incluyen tanto los conocimientos previos que necesitaría tener un estudiante para tener éxito en el estudio de cálculo, como la elaboración de materiales didácticos (Farfán, 1991 & 1994; Artigue, 1995; Dolores, 1999; Salinas et al., 2002).

Por ejemplo, Moreno (2005) indica que: "La enseñanza de los principios del cálculo resulta bastante problemática, y aunque seamos capaces de enseñar a los estudiantes a resolver de forma más o menos mecánica algunos problemas estándar, o bien a realizar algunas derivadas o integrales, tales acciones están muy lejos de lo que supondría una verdadera comprensión de los conceptos y métodos de pensamiento de esta parte de las matemáticas". Un problema importante ligado a esta situación es que el conocimiento generalmente se trata fuera de contextos apropiados. Así, cuando se pretende mostrar a los estudiantes la utilidad de los contenidos que se estudian, a lo más que se llega en un curso común de cálculo es a resolver los llamados problemas de aplicación que se proponen en los textos, que casi nunca corresponden a la realidad.

Esto tiene consecuencias negativas cuando los que aprenden son estudiantes que en el ejercicio de su profesión requieren de conocimientos y habilidades que les permitan resolver problemas de verdad. Tal es el caso de quienes se preparan en carreras de ingeniería. Camarena (1990) menciona que "parte de la problemática en ingeniería es que la matemática se encuentra totalmente desvinculada de las asignaturas de la ingeniería, y la realidad del ingeniero reclama esta vinculación que en materia de educación está en tierra de nadie".

Particularmente, en los programas de estudio correspondientes a los cursos de cálculo para ingeniería se puede leer, por ejemplo, que su objetivo consiste en proporcionar al alumno los conocimientos fundamentales del cálculo que serán utilizados en la interpretación, planteamiento y resolución de problemas específicos de su carrera; sin embargo, ni en dichos programas ni en los textos que se sugieren para los cursos son mencionados o tratados. Y más todavía: en comunicaciones personales con profesores que imparten dichos cursos señalan que, si bien tienen alguna idea, no conocen problemas o situaciones específicas de las carreras profesionales; por tanto, se limitan a enseñar, cuando mucho, el tipo de aplicaciones contenidas en los textos que llevan los alumnos.

Hay varios reportes en torno a esta situación de los profesores de matemáticas en el nivel superior de enseñanza. Moreno (2005) hace referencia a una investigación sobre las creencias de los docentes e indica que algunos maestros de matemáticas de las carreras de biología y química reconocen su "deficiente formación alejada de los modelos químicos y biológicos, y la influencia que esto tiene en su enseñanza, pues les impide dar explicaciones convincentes de algo que ni dominan ni conocen suficientemente".

Por otra parte, en entrevistas con profesores que imparten cursos de especialidad en ingeniería, donde se supone que emplean sus conocimientos de cálculo, afirman que realmente necesitan muy poco de estos conceptos, debido a que no se involucran con las deducciones de métodos o fórmulas, sólo las usan. Y como el tipo de problemas no van más allá de los rutinarios –ejercicios típicos que se presentan en los libros de texto de uso común–, no se necesita más.

Estas situaciones, producto de la experiencia, creencias y costumbres de los profesores, así como de su inmersión en el sistema didáctico habitual2, repercuten directamente en el aprendizaje de los estudiantes y crea ideas falsas tanto sobre lo que se debe (qué y cómo) aprender como sobre la importancia de la matemática en su formación.

En diversos trabajos se mencionan las consecuencias negativas de estas situaciones. Artigue (1995) señala:

"Numerosas investigaciones realizadas muestran, con convergencias sorprendentes, que si bien se puede enseñar a los estudiantes a realizar de forma más o menos mecánica algunos cálculos de derivadas y primitivas y a resolver algunos problemas estándar, se encuentran

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com