Nuclear Energy
Enviado por pedroplj • 31 de Agosto de 2014 • 2.961 Palabras (12 Páginas) • 166 Visitas
INTRODUCTION
In physics, energy is a property of objects, transferable among them via fundamental interactions, which can be converted inform but not created or destroyed. The joule is the (SI) unit of energy, based on the amount transferred to an object by the mechanical work of moving it metre against a force of newton.
There are many forms of energy, but all these types must meet certain conditions such as being convertible to other kinds of energy, obeying conservation of energy, and causing a proportional change in mass in objects that possess it. Common energy forms include the kinetic energy of a moving object, the radiant energy carried by light and other electromagnetic radiation, the potential energy stored by virtue of the position of an object in a force field such as a gravitational, electric ormagnetic field, and the thermal energy comprising the microscopic kinetic and potential energies of the disordered motions of the particles making up matter. Some specific forms of potential energy include elastic energy due to the stretching or deformation of solid objects and chemical energy such as is released when a fuel burns.
Nuclear power, or nuclear energy, is the use of exothermic nuclear processes, to generate useful heat and electricity. The term includes nuclear fission, nuclear decay and nuclear fusion. Presently the nuclear fission of elements in the actinide series of the periodic table produce the vast majority of nuclear energy in the direct service of humankind, with nuclear decay processes, primarily in the form ofgeothermal energy, and radioisotope thermoelectric generators, in niche uses making up the rest.
NUCLEAR ENERGY
Nuclear power, or nuclear energy, is the use of exothermic nuclear processes, to generate useful heat and electricity. The term includes nuclear fission, nuclear decay and nuclear fusion.
The pursuit of nuclear energy for electricity generation began soon after the discovery in the early 20th century that radioactive elements, such as radium, released immense amounts of energy, according to the principle of mass–energy equivalence. However, means of harnessing such energy was impractical, because intensely radioactive elements were, by their very nature, short-lived (high energy release is correlated with short half-lives).
Installed nuclear capacity initially rose relatively quickly, rising from less than 1 gigawatt (GW) in 1960 to 100 GW in the late 1970s, and 300 GW in the late 1980’s. Since the late 1980’s worldwide capacity has risen much more slowly, reaching 366 GW in 2005. Between around 1970 and 1990, more than 50 GW of capacity was under construction (peaking at over 150 GW in the late 70s and early 80s) in 2005, around 25 GW of new capacity was planned. More than two-thirds of all nuclear plants ordered after January 1970 were eventually cancelled. A total of 63 nuclear units were canceled in the USA between 1975 and 1980
• Nuclear power plant
Just as many conventional thermal power stations generate electricity by harnessing the thermal energy released from burning fossil fuels, nuclear power plants convert the energy released from the nucleus of an atom via nuclear fission that takes place in a nuclear reactor. The heat is removed from the reactor core by a cooling system that uses the heat to generate steam, which drives a steam turbine connected to a generator producing electricity.
• Life cycle
A nuclear reactor is only part of the life-cycle for nuclear power. The process starts with mining (see Uranium mining). Uranium mines are underground, open-pit, or in-situ leach mines. In any case, the uranium ore is extracted, usually converted into a stable and compact form such as yellowcake, and then transported to a processing facility. Here, the yellowcake is converted to uranium hexafluoride, which is thenenriched using various techniques. At this point, the enriched uranium, containing more than the natural 0.7% U-235, is used to make rodsof the proper composition and geometry for the particular reactor that the fuel is destined for. The fuel rods will spend about 3 operational cycles (typically 6 years total now) inside the reactor, generally until about 3% of their uranium has been fissioned, then they will be moved to a spent fuel pool where the short lived isotopes generated by fission can decay away. After about 5 years in a spent fuel pool the spent fuel is radioactively and thermally cool enough to handle, and it can be moved to dry storage casks or reprocessed.
• Conventional fuel resources
Uranium is a fairly common element in the Earth's crust. Uranium is approximately as common as tin or germanium in the Earth's crust, and is about 40 times more common than silver. Uranium is a constituent of most rocks, dirt, and of the oceans. The fact that uranium is so spread out is a problem because mining uranium is only economically feasible where there is a large concentration. Still, the world's present measured resources of uranium, economically recoverable at a price of 130 USD/kg, are enough to last for between 70 and 100 years.
Current light water reactors make relatively inefficient use of nuclear fuel, fissioning only the very rare uranium-235 isotope. Nuclear reprocessing can make this waste reusable, and more efficient reactor designs, such as the currently under construction Generation III reactors achieve a higher efficiency burn up of the available resources, than the current vintage generation II reactors, which make up the vast majority of reactors worldwide.
• Solid waste
The most important waste stream from nuclear power plants is spent nuclear fuel. It is primarily composed of unconverted uranium as well as significant quantities of transuranicactinides (plutonium and curium, mostly). In addition, about 3% of it is fission products from nuclear reactions. The actinides (uranium, plutonium, and curium) are responsible for the bulk of the long-term radioactivity, whereas the fission products are responsible for the bulk of the short-term radioactivity
• High-level radioactive waste
High-level radioactive waste management concerns management and disposal of highly radioactive materials created during production of nuclear power. The technical issues in accomplishing this are daunting, due to the extremely long periods radioactive wastes remain deadly to living organisms. Of particular concern are two long-lived fission products, Technetium-99 (half-life 220,000 years) and Iodine-129 (half-life 15.7 million years), which dominate spent nuclear fuel radioactivity after a few thousand years. The most troublesometransuranic elements in spent fuel are Neptunium-237 (half-life two million years) and Plutonium-239 (half-life 24,000
...