Numeros Complejos
Enviado por tuculo111 • 18 de Octubre de 2013 • 975 Palabras (4 Páginas) • 218 Visitas
Unidad imaginaria:Se llama así al número y se designa por la letra i.
Números imaginarios:Un número imaginario se denota por bi, donde :b es un número real,e i es la unidad imaginaria.Con los números imaginarios podemos calcular raíces con índice par y radicando negativo.
x2 + 9 = 0
Potencias de la unidad imaginaria
i0 = 1 i1 = i i2 = −1 i3 = −i i4 = 1
Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto vale una determinada potencia de i, se divide el exponente entre 4, y el resto es el exponente de la potencia equivalente a la dada.
i22
i22 = (i4)5 • i2 = − 1
Números complejos en forma binómica
Al número a + bi le llamamos número complejo en forma binómica.
El número a se llama parte real del número complejo.
El número b se llama parte imaginaria del número complejo.
Si b = 0 el número complejo se reduce a un número real ya que a + 0i = a.
Si a = 0 el número complejo se reduce a bi, y se dice que es un número imaginario puro.
El conjunto de todos números complejos se designa por .
Los números complejos a + bi y −a − bi se llaman opuestos.
Los números complejos z = a + bi y z = a − bi se llaman conjugados.
Dos números complejos son iguales cuando tienen la misma componente real y la misma componente imaginaria.
Representación gráfica de números complejos
Los números complejos se representan en unos ejes cartesianos. El eje X se llama eje real y el Y, eje imaginario. El número complejo a + bi se representa:
Por el punto (a,b), que se llama su afijo,
z
Los afijos de los números reales se sitúan sobre el eje real, X. Y los imaginarios sobre el eje imaginario, Y.
Operaciones con números complejos en la forma binómica
Suma y diferencia de números complejos
La suma y diferencia de números complejos se realiza sumando y restando partes reales entre sí y partes imaginarias entre sí.
(a + bi) + (c + di) = (a + c) + (b + d)i (a + bi) − (c + di) = (a − c) + (b − d)i
(5 + 2i) + ( − 8 + 3i) − (4 − 2i) = (5 − 8 − 4) + (2 + 3 + 2)i = −7 + 7i
Multiplicación de números complejos
El producto de los números complejos se realiza aplicando la propiedad distributiva del producto respecto de la suma y teniendo en cuenta que i2 = −1.
(a + bi) • (c + di) = (ac − bd) + (ad + bc)i
(5 + 2i) • (2 − 3i) =10 − 15i + 4i − 6 i2 = 10 − 11i + 6 = 16 − 11i
División de números complejos
El cociente de números complejos se hace racionalizando el denominador; esto es, multiplicando numerador y denominador por el conjugado de éste.
Números complejos en forma polar
Módulo de un número complejo
El módulo de un número complejo es el módulo del vector determinado por el origen de coordenadas y su afijo. Se designa por |z|.
Argumento de un número
...