ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

PRESION DE VAPOR


Enviado por   •  3 de Febrero de 2013  •  Tesis  •  2.284 Palabras (10 Páginas)  •  954 Visitas

Página 1 de 10

PRESION DE VAPOR

La presión de vapor es la presión de un sistema cuando el sólido o liquido se hallan en equilibrio con su vapor.

Los vapores y los gases, tienden a ocupar el mayor volumen posible y ejercen así sobre las paredes de los recintos que los contienen, una presión también llamada, fuerza elástica o tensión. Para determinar un valor sobre esta presión se divide la fuerza total por la superficie en contacto.

La regla de fases establece que la presión del vapor de un líquido puro es función única de la temperatura de saturación. Vemos pues que la presión de vapor en la mayoría de los casos se puede expresar como

Pvp = f (t)

La cual podría estar relacionada con cualquier otra propiedad intensiva de un líquido saturado (o vapor), pero es mucho mejor relacionarla directamente con la temperatura de saturación.

La presión de vapor de un líquido se relaciona con la temperatura por medio de la ecuación de Claussius Clapeyron, sin embargo existen muchas ecuaciones que estudian esta propiedad de los fluidos, pero de todas maneras estas ecuaciones pueden referirse a la ecuación de Clapeyron:

Ln P2/P1 = (DH/R) vaporización (1/T1-1/T2)

Esta ecuación mediante pasos matemáticos, puede convertirse en:

Ln Pvp = A+B/T

La gráfica del logaritmo de la presión del vapor y el reciproco de la temperatura absoluta es una recta. La ecuación anterior no es una mala aproximación pero en general esta curva realmente tiene unas curvaturas pequeñas que muestran así que esta aproximación tampoco es la mejor. Estas curvas las observamos exagerando un poco el dibujo, de la siguiente manera:

Para mirar un ejemplo de presión de vapor aplicada a tuberías es bueno analizar un poco las plantas productoras de petroquímicos y refinerías, ya que estas requieren de muchos servicios como: vapor de agua (enfriamiento, servicio, proceso), aire de instrumentos, energía eléctrica; para ello estas plantas necesitan grandes sistemas de transformación de energía, y redes de distribución de varios kilómetros, en las cuales se incurre en perdidas de energía. Para lo que es necesario usar expresiones matemáticas para calcular dichas perdidas y llevar a cabo estudios sobre la recuperación de la inversión y la rentabilidad de acciones de ahorro de energía.

Se debe realizar un pequeño análisis de los sistemas de generación y distribución de vapor, principalmente de aquellos que por ser de gran tamaño son muy dinámicos cambiando sus condiciones de operación; flujo, temperatura y presión varias veces al día. Los cambios pueden ser ocasionados por modificación en las condiciones de operación de las plantas de proceso de mantenimiento predictivo o correctivo de los equipos generadores y consumidores de vapor y energía eléctrica, o por cambio de las condiciones atmosféricas. Estos cambios nos proporcionan áreas de oportunidad de ahorro si se mantiene un análisis constante del sistema de generación y distribución de vapor.

En la generación del vapor vemos como las plantas que lo generan, están formadas por dos o tres niveles de presión, los cuales son distribuidos según su uso o según la magnitud de la presión del vapor, de esta forma: para los bloques de generación eléctrica, turbinas para accionar bombas y compresores de plantas de procesos se usa el vapor de mayor presión; para turbogeneradores eléctricos y grandes turbocompresores, se usa por lo general extracciones de vapor media; las turbinas de menor capacidad normalmente descargan a la red de baja presión.

El control de la presión y la temperatura en las redes de distribución de vapor es sumamente importante, ya que excesos de estas presiones pueden causar un desgaste mas acelerado de la tubería y aparte de esto se pueden generar muchas perdidas de energía, lo cual no es conveniente para un proceso en el cual se esta tratando de aprovechar la energía al máximo.

Para controlar estos excesos o simplemente variantes de las presiones y temperaturas adecuadas se tienen controles de los generadores de vapor los cuales mantienen estos factores en los valores ajustados, esta regulación también se lleva a cabo durante todo el proceso ya que en las redes de media y baja presión, también se cuenta con reguladores de presión y temperatura en turbinas y otros aparatos que intervienen en el este.

Ya con estos reguladores en el procesos, se puede decir que cuando las condiciones de presión y temperatura del vapor que llegan a los equipos varían. La demanda de vapor se ajustará dependiendo de la entalpía y otras características del vapor y del salto entalpico disponible, en el caso de las turbinas.

Para mantener el control en los sistemas de distribución de vapor, es necesario llevar una buena administración y una constante revisión de toda la red, a su ves mediante los dato recolectado durante las revisiones periódicas es necesario estar calculando las perdidas de energía ya que estas afecten directamente la eficiencia del proceso, por ultimo es necesario determinar los puntos de ajuste adecuados para la red.

También es necesario analizar la posibilidad de operar la red a la menor presión posible para lo cual seria necesario consultar a los fabricantes de las turbinas y determinar si la tubería podría transportar los volúmenes necesarios.

TENSIÓN SUPERFICIAL

En física se denomina tensión superficial de un líquido a la cantidad de energía necesaria para aumentar su superficie por unidad de área.1 Esta definición implica que el líquido tiene una resistencia para aumentar su superficie. Este efecto permite a algunos insectos, como el zapatero (Gerris lacustris), desplazarse por la superficie del agua sin hundirse. La tensión superficial (una manifestación de las fuerzas intermoleculares en los líquidos), junto a las fuerzas que se dan entre los líquidos y las superficies sólidas que entran en contacto con ellos, da lugar a la capilaridad. Como efecto tiene la elevación o depresión de la superficie de un líquido en la zona de contacto con un sólido.

Otra posible definición de tensión superficial: es la fuerza que actúa tangencialmente por unidad de longitud en el borde de una superficie libre de un líquido en equilibrio y que tiende a contraer dicha superficie.

PROPIEDADES.

La tensión superficial suele representarse mediante la letra griega (gamma), o mediante (sigma). Sus unidades son de N•m-1=J•m-2=Kg/s2=Dyn/cm.

Algunas propiedades de :

 > 0, ya que para aumentar el estado del líquido en contacto hace falta llevar más moléculas a la superficie, con lo cual disminuye la energía del sistema y es

o la cantidad de trabajo necesario para llevar una molécula a la superficie.

 depende

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com