ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Probabilidad


Enviado por   •  17 de Junio de 2013  •  829 Palabras (4 Páginas)  •  260 Visitas

Página 1 de 4

. Definición Clásica de la Probabilidad

Esta definición clásica de probabilidad fue una de las primeras que se dieron (1900) y se atribuye a Laplace; también se conoce con el nombre de probabilidad a priori pues, para calcularla, es necesario conocer, antes de realizar el experimento aleatorio, el espacio muestral y el número de resultados o sucesos elementales que entran a formar parte del suceso.

La aplicación de la definicion clásica de probabilidad puede presentar dificultades de aplicación cuando el espacio muestral es infinito o cuando los posibles resultados de un experimento no son equiprobables. Ej: En un proceso de fabricación de piezas puede haber algunas defectuosas y si queremos determinar la probabilidad de que una pieza sea defectuosa no podemos utilizar la definición clásica pues necesitaríamos conocer previamente el resultado del proceso de fabricación.

Para resolver estos casos, se hace una extensión de la definición de probabilidad, de manera que se pueda aplicar con menos restricciones, llegando así a la definición frecuentista de probabilidad.

La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades de los conjuntos. Los conjuntos son colecciones abstractas de objetos, consideradas como objetos en sí mismas, y son una herramienta básica en la formulación de cualquier teoría matemática.

Más aún, la teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas: números, funciones, figuras geométricas, ...; y junto con la lógica permite estudiar los fundamentos de esta. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática. La propia teoría de conjuntos es objeto de estudio per se, no sólo como herramienta auxiliar, en particular las propiedades y relaciones de los conjuntos infinitos.

En esta disciplina es habitual que se presenten casos de propiedades indemostrables o contradictorias, como la hipótesis del continuo o la existencia de un cardinal inaccesible. Por esta razón, los razonamientos y técnicas de la teoría de conjuntos se apoyan en gran medida en la lógica matemática.

El desarrollo histórico de la teoría de conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas "puras" en la segunda mitad del siglo XIX, precedido por algunas ideas de Bernhard Bolzano e influenciado por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana de conjuntos propició los trabajos de Bertrand Russell, Ernst Zermelo, Abraham Fraenkel y otros a principios del siglo XX.

La Técnica de la Multiplicación

La técnica de la multiplicación: Si hay m formas de hacer una cosa y hay n formas de hacer otra cosa, hay m x n formas da hacer ambas cosas

En términos de fórmula

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com