Probabilidad
Enviado por Doggiepllas1 • 23 de Junio de 2013 • 1.541 Palabras (7 Páginas) • 775 Visitas
3.2.4. DISTRIBUCIÓN GEOMÉTRICA.
DISTRIBUCIÓN GEOMÉTRICA.
Esta distribución es un caso especial de la Binomial, ya que se desea que ocurra un éxito por primera y única vez en el último ensayo que se realiza del experimento, para obtener la fórmula de esta distribución, haremos uso de un ejemplo.
Ejemplo:
Se lanza al aire una moneda cargada 8 veces, de tal manera que la probabilidad de que aparezca águila es de 2/3, mientras que la probabilidad de que aparezca sello es de 1/3, Determine la probabilidad de que en el último lanzamiento aparezca una águila.
Solución:
Si nosotros trazamos un diagrama de árbol que nos represente los 8 lanzamientos de la moneda, observaremos que la única rama de ese árbol que nos interesa es aquella en donde aparecen 7 sellos seguidos y por último una águila; como se muestra a continuación:
S S S S S S S A
Sí denotamos;
x = el número de repeticiones del experimento necesarias para que ocurra un éxito por primera y única vez = 8 lanzamientos
p = probabilidad de que aparezca una águila = p( éxito) = 2/3
q = probabilidad de que aparezca un sello = p(fracaso) = 1/3
Entonces la probabilidad buscada sería;
P(aparezca una águila en el último lanzamiento)=p(S)*p(S)*p(S)*p(S)*p(S)*p(S)*p(S)*p(A) =
=q*q*q*q*q*q*q*p =
Luego, la fórmula a utilizar cuando se desee calcular probabilidades con esta distribución sería;
Donde:
p(x) = probabilidad de que ocurra un éxito en el ensayo x por primera y única vez
p = probabilidad de éxito
q = probabilidad de fracaso
Resolviendo el problema de ejemplo;
x = 8 lanzamientos necesarios para que aparezca por primera vez una águila
p = 2/3 probabilidad de que aparezca una águila
q = 1/3 probabilidad de que aparezca un sello
p(x=8) =
Ejemplos:
1. Sí la probabilidad de que un cierto dispositivo de medición muestre una desviación excesiva es de 0.05, ¿cuál es la probabilidad de que; a) el sexto de estos dispositivos de medición sometidos a prueba sea el primero en mostrar una desviación excesiva?, b) el séptimo de estos dispositivos de medición sometidos a prueba, sea el primero que no muestre una desviación excesiva?.
Solución:
a) x = 6 que el sexto dispositivo de medición probado sea el primero que muestre una variación excesiva
p = 0.05 =probabilidad de que un dispositivo de medición muestre una variación excesiva
q = 0.95 =probabilidad de que un dispositivo de medición no muestre una variación excesiva
p(x = 6) =
b) x = 5 que el quinto dispositivo de medición probado, sea el primero que no muestre una desviación excesiva
p = 0.95 = probabilidad de que un dispositivo de medición no muestre una variación excesiva
q = 0.05 = probabilidad de que un dispositivo de medición muestre una variación excesiva
p(x = 5) =
2. Los registros de una compañía constructora de pozos, indican que la probabilidad de que uno de sus pozos nuevos, requiera de reparaciones en el término de un año es de 0.20. ¿Cuál es la probabilidad de que el quinto pozo construido por esta compañía en un año dado sea el primero en requerir reparaciones en un año?.
Solución:
x = 5 que el quinto pozo sea el primero que requiera reparaciones en un año
p = 0.20 = probabilidad de que un pozo requiera reparaciones en el término de un año
q = 0.80 = probabilidad de que un pozo no requiera reparaciones en el término de un año
p(x = 5) =
9. Problemas Propuestos.
1. En una cierta área de la ciudad se da como una razón del 75% de los robos la necesidad de dinero para comprar estupefacientes. Encuentre la probabilidad que dentro de los 5 próximos asaltos reportados en esa área
...