ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Proporción aurea


Enviado por   •  9 de Noviembre de 2014  •  1.490 Palabras (6 Páginas)  •  324 Visitas

Página 1 de 6

• ¿Qué es la proporción áurea?

La proporción áurea es un número irracional que descubrieron pensadores de la Antigüedad al advertir el vínculo existente entre dos segmentos pertenecientes a una misma recta. Dicha proporción puede hallarse en la naturaleza (flores, hojas, etc.) y en figuras geométricas y se le otorga una condición estética: aquello cuyas formas respetan la proporción áurea es considerado bello.

Esta proporción, que también suele mencionarse como razón áurea, número áureo o divina proporción, incluso solía ser señalada por sus supuestas propiedades místicas.

Su nombre tiene algo de mítico porque suena mucho más de lo que realmente se le conoce. Se le llama también divina proporción, número de oro, regla dorada, etc. Su construcción y uso no es nada complicado, lo que pasa es que es mucho más inmediato hacer una proporción estática, basada en la igualdad, como dividir algo por un número entero, lo mismo que establecer un ritmo de crecimiento a partir de por ejemplo la duplicación: 1, 2, 4, 8, 16... En el mundo de la informática es lo usual, y cuando nos condicionan factores materiales, espaciales, físicos, la cuadrícula es la forma más cómoda de adaptarse a estos condicionantes. Sin embargo en la naturaleza se manifiestan otras organizaciones formales y principios proporcionales mucho más interesantes como modelo para el trabajo creativo.

La proporción áurea está formulada ya en los Elementos de Euclides (s.-III), en una construcción geométrica denominada División de un segmento en media y extrema razón. La idea es tan simple como perfecta: El todo se divide en dos partes tal que, la razón proporcional entre la parte menor y la mayor, es igual a la existente entre la mayor y el total, es decir, la suma de ambas.

El segmento de partida es AB. Para aplicarle la Sección Áurea se le coloca perpendicularmente en un extremo (B) otro segmento que mida exactamente la mitad. Se define así un triángulo rectángulo con los catetos en proporción 1:2. Pues bien, a la hipotenusa se le resta el cateto menor (arco de la derecha) y la diferencia, que llevamos al segmento AB con otro arco, es la sección áurea de éste. La parte menor Bfi es a la mayor Afi como ésta es a la suma AB.

Igual de simple es hacer la operación inversa, es decir, averiguar de qué medida es sección áurea el segmento AB. Formamos el mismo triángulo que antes, pero en lugar de restar a la hipotenusa el cateto menor, se le suma. AB es sección áurea de Afi, y este segmento es la suma de AB y su sección áurea hallada en el esquema anterior, por supuesto.

Un rectángulo áureo es aquel en que sus lados están en razón áurea. Se puede construir rápidamente a partir de un cuadrado: cogemos el punto medio de la base, tomamos con un compás la distancia hasta uno de los vértices superiores y con un arco llevamos esta medida a la prolongación de la base. El rectángulo ampliado es áureo, como también la ampliación, si suprimimos el cuadrado inicial, tiene esta misma proporción.

A veces vemos estas otras construcciones, pero hacen lo mismo que la anterior, definir un triángulo rectángulo con un lado y la mitad de otro, restar la mitad a la hipotenusa y aplicar la diferencia como ampliación del cuadrado.

La (pseudo) espirallogarítmica

Del gráfico anterior, deducimos que a cualquier rectángulo áureo se le puede restar por su lado menor o bien añadir por su lado mayor un cuadrado, y el resultado sigue siendo un rectángulo áureo. En gnomónica diríamos que el cuadrado es el gnomon del rectángulo áureo (traduzco: gnomon es aquella figura que añadida a otra le proporciona más superficie sin cambiar la forma). Esta propiedad se ilustra frecuentemente con esta espiral logarítmica:

Lo de espiral logarítmica hay que matizarlo, es una pseudo-espiral porque se forma con arcos de 90º de circunferencia inscritos en cada cuadrado y enlazados entre sí, mientras que en una verdadera espiral hay un cambio de curvatura constante, no cambios puntuales. Pero crece en proporción geométrica, por eso lo de logarítmica.

• ¿Cómo se determina?

El número áureo es el valor numérico de la proporción que guardan entre sí dos segmentos de recta a y b (a más largo que b), que cumplen la siguiente relación:

La longitud total es al segmento a, como a es al segmento b.

Escrito como ecuación algebraica :

Siendo el valor del número áureo φ el cociente

Surge al plantear el problema geométrico siguiente: partir un segmento en otros dos, de forma que, al dividir la longitud total entre la del segmento mayor, obtengamos el mismo resultado que al dividir la longitud del segmento mayor entre la del menor.

Cálculo del valor del número áureo

Dos números a y b están en proporción áurea si se cumple:

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com