ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Reactivos concurso matemáticas


Enviado por   •  31 de Enero de 2016  •  Examen  •  4.869 Palabras (20 Páginas)  •  204 Visitas

Página 1 de 20
  1. ¿Cuáles de las siguientes relaciones [pic 1], [pic 2], [pic 3], [pic 4] son funciones?
  1. [pic 5] 
  2. [pic 6]
  3. [pic 7] 
  4. [pic 8] 
  1. ¿Cuál es la gráfica de la función [pic 9]?

[pic 10]

[pic 11]

[pic 12]

[pic 13]

  1. ¿Cuál es la ecuación de la recta paralela a [pic 14] que pasa por el punto [pic 15]?
  1. [pic 16]
  2. [pic 17] 
  3. [pic 18]
  4. [pic 19] 
  1. ¿Cuál es la ecuación de la recta perpendicular a [pic 20] que pasa por el punto [pic 21]?
  1. [pic 22] 
  2. [pic 23] 
  3. [pic 24]
  4. [pic 25]
  1. ¿Cuál es la pendiente [pic 26] de la recta en la figura

[pic 27]

?

  1. [pic 28]
  2. [pic 29]
  3. [pic 30]
  4. [pic 31]
  1. ¿Cuál es el valor de [pic 32] que soluciona la ecuación [pic 33]?
  1. [pic 34]
  2. [pic 35]
  3. [pic 36]
  4. [pic 37]
  1. ¿Cuál es la raíz de la ecuación [pic 38]?
  1.  [pic 39]
  2.  [pic 40]
  3.  [pic 41]
  4.  [pic 42]
  1. Arturo y Martín son trabajadores de limpieza de la Preparatoria 08. Cuando Arturo limpia solo toda la escuela, tarda 8 horas. Cuando Arturo y Martín trabajan juntos, pueden limpiar toda la escuela en 5 horas. ¿Cuántas horas tardará Martín en limpiar toda la escuela si trabaja solo?
  1. 10 horas, 30 minutos
  2. 14 horas, 15 minutos
  3. 11 horas, 45 minutos
  4. 13 horas, 20 minutos
  1. El Sr. Alberto, profesor de química, necesita una solución de ácido acético al 10% para un experimento de química. Después de revisar el almacén, descubre que sólo dispone de soluciones de ácido acético al 5% y al 20%. Como no hay tiempo para ordenar la solución al 10%, el Sr. Alberto decide hacerla por medio de combinar las soluciones al 5% y al 20%. ¿Cuántos litros de la solución al 5% debe agregar a 8 litros de la que está al 20%, para obtener otra de ácido acético al 10%?
  1. 10 litros
  2. 14 litros
  3. 16 litros
  4. 12 litros
  1. En una feria, Mary vende jarrones pequeños y grandes. Los pequeños se venden a $50 cada uno, y los grandes a $175. Al final del día, Mary ya no sabe el número de jarrones de cada tamaño que vendió. Sin embargo, al ver sus recibos se da cuenta de que vendió 14 jarrones por un total de $1,200. Calcule ¿cuál es el número de jarrones pequeños y grandes que vendió?
  1. 13 pequeños y 1 grande
  2. 3 pequeños y 11 grandes
  3. 12 pequeños y 2 grandes
  4. 10 pequeños y 4 grandes
  1. ¿Cuál es la solución de la inecuación [pic 43]?
  1. [pic 44]
  2. [pic 45] 
  3. [pic 46]
  4. [pic 47] 
  1. ¿Cuál es la solución de la inecuación [pic 48]?
  1. [pic 49] 
  2. [pic 50] 
  3. [pic 51]
  4. [pic 52] 
  1. A la señorita  Rayo le pagan $15,000.00 mensuales más una comisión del 8% sobre sus ventas ¿Qué venta debe realizar la señorita Rayo para obtener un pago entre $23,000.00 y $27,000.00?
  1. De $100,000.00 a $150,000.00
  2. De $120,000.00 a $140,000.00
  3. De $120,000.00 a $160,000.00
  4. De $110,000.00 a $130,000.00
  1. Un matrimonio dispone de $320.00 para ir al cine con sus hijos. Si compraran entradas de $50.00 les faltaría dinero y si compraran de $40.00 les sobraría dinero. ¿Cuántos hijos tiene el matrimonio?
  1. 6 hijos
  2. 3 hijos
  3. 5 hijos
  4. 4 hijos
  1. Se sabe que el cuádruplo del número de monedas que hay dentro de un bolso es tal, que disminuido en 5, no puede exceder de 31, y que el quíntuplo del mismo número de monedas aumentado en 8, no es menor que 52. ¿Cuál es dicho número?
  1. 7
  2. 9
  3. 12
  4. 10
  1. ¿Cuál es la solución del sistema de ecuaciones [pic 53]?
  1. [pic 54]
  2.  [pic 55]
  3. [pic 56]
  4. [pic 57]
  1. ¿Cuál es una característica del sistema de ecuaciones [pic 58]?
  1. Gráficamente las rectas se cortan en un punto
  2. Las rectas tienen distinta ordenada al origen
  3. Gráficamente las rectas están superpuestas
  4. Las pendientes  de las rectas son distintas
  1. Cuál es una característica del sistema de ecuaciones [pic 59]?
  1. Las rectas tienen pendientes diferentes
  2. Gráficamente las rectas son paralelas
  3. Las rectas tienen igual ordenada al origen
  4. Gráficamente son rectas sobrepuestas
  1. Un cierto número de estudiantes deben acomodarse en una residencia. Si se ubicaran dos estudiantes por habitación entonces quedarían 2 estudiantes sin habitación. Si se ubicaran 3 estudiantes por habitación entonces sobrarían 2 habitaciones. ¿Cuántas habitaciones disponibles hay en la residencia y cuántos estudiantes deben acomodarse en ella?
  1. 18 estudiantes y 9 habitaciones
  2. 14 estudiantes y 6 habitaciones
  3. 16 estudiantes y 7 habitaciones
  4. 18 estudiantes y 8 habitaciones
  1. Una aleación contiene tres veces más cobre que plata y otra contiene cinco veces más plata que cobre. ¿Qué cantidad de cada aleación se ha de utilizar para hacer 14 kilogramos con el doble de cobre que de plata?
  1. 12 kg (3 veces más cobre que plata) y 2 kg (5 veces más plata que cobre)
  2. 13 kg (3 veces más cobre que plata) y 1 kg (5 veces más plata que cobre)
  3. 4 kg (3 veces más cobre que plata) y 10 kg (5 veces más plata que cobre)
  4. 3 kg (3 veces más cobre que plata) y 11 kg (5 veces más plata que cobre)

...

Descargar como (para miembros actualizados) txt (8 Kb) pdf (785 Kb) docx (407 Kb)
Leer 19 páginas más »
Disponible sólo en Clubensayos.com