Regresion Lineal
Enviado por lord5x • 27 de Febrero de 2014 • 278 Palabras (2 Páginas) • 243 Visitas
En estadística la regresión lineal o ajuste lineal es un método matemático que modela la relación entre una variable dependiente Y, las variables independientes Xi y un término aleatorio ε. Este modelo puede ser expresado como:
Y_t = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots +\beta_p X_p + \varepsilon
Y_t: variable dependiente, explicada o regresando.
X_1, X_2, \cdots, X_p : variables explicativas, independientes o regresores.
\beta_0,\beta_1,\beta_2,\cdots ,\beta_p : parámetros, miden la influencia que las variables explicativas tienen sobre el regresando.
donde \beta_0 es la intersección o término "constante", las \beta_i \ (i > 0) son los parámetros respectivos a cada variable independiente, y p es el número de parámetros independientes a tener en cuenta en la regresión. La regresión lineal puede ser contrastada con la regresión no lineal.
El término regresión se utilizó por primera vez en el estudio de variables antropométricas: al comparar la estatura de padres e hijos, resultó que los hijos cuyos padres tenían una estatura muy superior al valor medio tendían a igualarse a éste, mientras que aquellos cuyos padres eran muy bajos tendían a reducir su diferencia respecto a la estatura media; es decir, "regresaban" al promedio.2 La constatación empírica de esta propiedad se vio reforzada más tarde con la justificación teórica de ese fenómeno.
El término lineal se emplea para distinguirlo del resto de técnicas de regresión, que emplean modelos basados en cualquier clase de función matemática. Los modelos lineales son una explicación simplificada de la realidad, mucho más ágil y con un soporte teórico por parte de la matemática y la estadística mucho más extenso.
Pero bien, como se ha dicho, podemos usar el término lineal para distinguir modelos basados en cualquier clase de aplicación.
...