ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Regresion Lineal


Enviado por   •  27 de Noviembre de 2013  •  1.267 Palabras (6 Páginas)  •  383 Visitas

Página 1 de 6

Si utilizamos un sistema de coordenadas cartesianas para representar la distribución bidimensional, obtendremos un conjunto de puntos conocido con el diagrama de dispersión, cuyo análisis permite estudiar cualitativamente, la relación entre ambas variables tal como se ve en la figura. El siguiente paso, es la determinación de la dependencia funcional entre las dos variables x e y que mejor ajusta a la distribución bidimensional. Se denomina regresión lineal cuando la función es lineal, es decir, requiere la determinación de dos parámetros: la pendiente y la ordenada en el origen de la recta de regresión, y=ax+b.

La regresión nos permite además, determinar el grado de dependencia de las series de valores X e Y, prediciendo el valor y estimado que se obtendría para un valor x que no esté en la distribución.

Vamos a determinar la ecuación de la recta que mejor ajusta a los datos representados en la figura. Se denomina error ei a la diferencia yi-y, entre el valor observado yi, y el valor ajustado y= axi+b, tal como se ve en la figura inferior. El criterio de ajuste se toma como aquél en el que la desviación cuadrática media sea mínima, es decir, debe de ser mínima la suma

El extremos de una función: máximo o mínimo se obtiene cuando las derivadas de s respecto de a y de b sean nulas. Lo que da lugar a un sistema de dos ecuaciones con dos incógnitas del que se despeja a y b.

El coeficiente de correlación es otra técnica de estudiar la distribución bidimensional, que nos indica la intensidad o grado de dependencia entre las variables X e Y. El coeficiente de correlación r es un número que se obtiene mediante la fórmula.

El numerador es el producto de las desviaciones de los valores X e Y respecto de sus valores medios. En el denominador tenemos las desviaciones cuadráticas medias de X y de Y.

El coeficiente de correlación puede valer cualquier número comprendido entre -1 y +1.

• Cuando r=1, la correlación lineal es perfecta, directa.

• Cuando r=-1, la correlación lineal es perfecta, inversa

• Cuando r=0, no existe correlación alguna, independencia total de los valores X e Y

Variantes de la regresión lineal

• La función potencial

y=c•xa

Se puede trasformar en

Si usamos las nuevas variables X=log x e Y=log y, obtenemos la relación lineal

Y=aX+b.

Donde b=log c

Ejemplo:

x 10 20 30 40 50 60 70 80

y 1.06 1.33 1.52 1.68 1.81 1.91 2.01 2.11

Usar la calculadora para transformar esta tabla de datos en esta otra

X=log x 1.0 1.30 1.477 1.60 1.699 1.778 1.845 1.903

Y=log y 0.025 0.124 0.182 0.225 0.258 0.281 0.303 0.324

Calcular mediante el programa regresión lineal los parámetros a y c.

• Función exponencial

y=c•eax

Tomando logaritmos neperianos en los dos miembros resulta

ln y=ax+ln c

Si ponemos ahora X=x, e Y=ln y, obtenemos la relación lineal

Y=aX+b

Donde b=ln c.

Ejemplo:

x 12 41 93 147 204 264 373 509 773

y 930 815 632 487 370 265 147 76 17

Usar la calculadora para transformar esta tabla de datos en esta otra

X= x 12 41 93 147 204 264 373 509 773

Y=ln y 6.835 6.703 6.449 6.188 5.913 5.580 4.990 4.330 2.833

Calcular mediante el programa regresión lineal los parámetros a y c.

La clase Regresion

La clase Regresion que describe la regresión lineal no difiere substancialmente de la clase Estadistica que se ha descrito en la sección anterior. La diferencia estriba en que los miembros datos son dos arrays x e y que guardan las series de valores X e Y, cuya dependencia

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com