Regresion Lineal
Enviado por PPPdrules • 21 de Mayo de 2012 • 1.115 Palabras (5 Páginas) • 934 Visitas
El modelo de regresión lineal
El modelo lineal relaciona la variable dependiente Y con K variables explicativas (k = 1,...K), o cualquier transformación de éstas, que generan un hiperplano de parámetros desconocidos:
(2)
donde es la perturbación aleatoria que recoge todos aquellos factores de la realidad no controlables u observables y que por tanto se asocian con el azar, y es la que confiere al modelo su carácter estocástico. En el caso más sencillo, con una sola variable explicativa, el hiperplano es una recta:
(3)
El problema de la regresión consiste en elegir unos valores determinados para los parámetros desconocidos , de modo que la ecuación quede completamente especificada. Para ello se necesita un conjunto de observaciones. En una observación cualquiera i-ésima (i= 1,... I) se registra el comportamiento simultáneo de la variable dependiente y las variables explicativas (las perturbaciones aleatorias se suponen no observables).
(4)
Los valores escogidos como estimadores de los parámetros, , son los coeficientes de regresión, sin que se pueda garantizar que coinciden con parámetros reales del proceso generador. Por tanto, en
(5)
Los valores son por su parte estimaciones de la perturbación aleatoria o errores.
Hipótesis modelo de regresión lineal clásico
1. Esperanza matemática nula.
Para cada valor de X la perturbación tomará distintos valores de forma aleatoria, pero no tomará sistemáticamente valores positivos o negativos, sino que se supone que tomará algunos valores mayores que cero y otros menores, de tal forma que su valor esperado sea cero.
2. Homocedasticidad
para todo t
Todos los términos de la perturbación tienen la misma varianza que es desconocida. La dispersión de cada en torno a su valor esperado es siempre la misma.
3. Incorrelación. para todo t,s con t distinto de s
Las covarianzas entre las distintas pertubaciones son nulas, lo que quiere decir que no están correlacionadas o autocorrelacionadas. Esto implica que el valor de la perturbación para cualquier observación muestral no viene influenciado por los valores de la perturbación correspondientes a otras observaciones muestrales.
4. Regresores no estocásticos.
5. No existen relaciones lineales exactas entre los regresores.
6. Suponemos que no existen errores de especificación en el modelo ni errores de medida en las variables explicativas
7. Normalidad de las perturbaciones
Supuestos del modelo de regresión lineal
Para poder crear un modelo de regresión lineal, es necesario que se cumpla con los siguientes supuestos:3
1. La relación entre las variables es lineal.
2. Los errores en la medición de las variables explicativas son independientes entre sí.
3. Los errores tienen varianza constante. (Homocedasticidad)
4. Los errores tienen una esperanza matemática igual a cero (los errores de una misma magnitud y distinto signo son equiprobables).
5. El error total es la suma de todos los errores.
Tipos de modelos de regresión lineal
Existen diferentes tipos de regresión lineal que se clasifican de acuerdo a sus parámetros:
Regresión lineal simple
Sólo se maneja una variable independiente, por lo que sólo cuenta con dos parámetros. Son de la forma:4
(6)
donde es el error asociado a la medición del valor y siguen los supuestos de modo que (media cero, varianza constante e igual a un y con ).
Análisis
Dado el modelo de regresión simple, si se calcula la esperanza (valor esperado) del valor Y, se obtiene:5
(7)
Derivando respecto a y e igualando a cero, se obtiene:5
(9)
...