ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Serie De Tiempos


Enviado por   •  30 de Septiembre de 2012  •  2.990 Palabras (12 Páginas)  •  501 Visitas

Página 1 de 12

Modelo clásico de series de tiempo………………………………….

Análisis de fluctuación…………………………………….................

Análisis de la tendencia……………………………………………..

Análisis de variaciones cíclicas……………………………………...

Medición de variaciones estacionales e irregulares……………..…

Aplicación de ajuste de estaciones ………………………………….

Pronósticos basados en factores de tendencia y estaciones ……......

Bibliografía…………………………………………………………..

CONCEPTOS BASICOS DE SERIES DE TIEMPO

INTRODUCCIÓN

Toda institución, ya sea la familia, la empresa o el gobierno, tiene que hacer planes para el futuro si ha de sobrevivir y progresar. Hoy en día diversas instituciones requieren conocer el comportamiento futuro de ciertos fenómenos con el fin de planificar, prever o prevenir.

La planificación racional exige prever los sucesos del futuro que probablemente vayan a ocurrir. La previsión, a su vez, se suele basar en lo que ha ocurrido en el pasado. Se tiene pues un nuevo tipo de inferencia estadística que se hace acerca del futuro de alguna variable o compuesto de variables basándose en sucesos pasados. La técnica más importante para hacer inferencias sobre el futuro con base en lo ocurrido en el pasado, es el análisis de series de tiempo.

Son innumerables las aplicaciones que se pueden citar, en distintas áreas del conocimiento, tales como, en economía, física, geofísica, química, electricidad, en demografía, en marketing, en telecomunicaciones, en transporte, etc.

Series De Tiempo Ejemplos

1. Series económicas: - Precios de un artículo

- Tasas de desempleo

- Tasa de inflación

- Índice de precios, etc.

2. Series Físicas: - Meteorología

- Cantidad de agua caída

- Temperatura máxima diaria

- Velocidad del viento (energía eólica)

- Energía solar, etc.

3. Geofísica:

- Series sismologías

4. Series demográficas:

- Tasas de crecimiento de la población

- Tasa de natalidad, mortalidad

- Resultados de censos poblacionales

5. Series de marketing:

- Series de demanda, gastos, ofertas

6. Series de telecomunicación:

- Análisis de señales

7. Series de transporte:

- Series de tráfico

Uno de los problemas que intenta resolver las series de tiempo es el de predicción. Esto es dado una serie {x(t1),...,x(tn)} nuestros objetivos de interés son describir el comportamiento de la serie, investigar el mecanismo generador de la serie temporal, buscar posibles patrones temporales que permitan sobrepasar la incertidumbre del futuro.

En adelante se estudiará como construir un modelo para explicar la estructura y prever la evolución de una variable que observamos a lo largo del tiempo. La variables de interés puede ser macroeconómica (índice de precios al consumo, demanda de electricidad, series de exportaciones o importaciones, etc.), microeconómica (ventas de una empresa, existencias en un almacén, gastos en publicidad de un sector), física (velocidad del viento en una central eólica, temperatura en un proceso, caudal de un río, concentración en la atmósfera de un agente contaminante), o social (número de nacimientos, matrimonios, defunciones, o votos a un partido político).

DEFINICIÓN DE SERIE DE TIEMPO

En muchas áreas del conocimiento las observaciones de interés son obtenidas en instantes sucesivos del tiempo, por ejemplo, a cada hora, durante 24 horas, mensuales, trimestrales, semestrales o bien registradas por algún equipo en forma continua.

Llamamos Serie de Tiempo a un conjunto de mediciones de cierto fenómeno o experimento registradas secuencialmente en el tiempo. Estas observaciones serán denotadas por {x(t1), x(t2), ..., x(tn)} = {x(t) : t  T  R} con x(ti) el valor de la variable x en el instante ti. Si T = Z se dece que la serie de tiempo es discreta y si T = R se dice que la serie de tiempo es continua. Cuando ti+1 - ti = k para todo i = 1,...,n-1, se dice que la serie es equiespaciada, en caso contrario será no equiespaciada.

En adelante se trabajará con series de tiempo discreta, equiespaciadas en cuyo caso asumiremos y sin perdida de generalidad que: {x(t1), x(t2), ..., x(tn)}= {x(1), x(2), ..., x(n)}.

PRIMER PASO AL ANALIZAR CUALQUIER SERIE DE TIEMPO

El primer paso en el análisis de series de tiempo, consiste en graficar la serie. Esto nos permite detectar las componentes esenciales de la serie.

El gráfico de la serie permitirá:

a) Detectar Outlier: se refiere a puntos de la serie que se escapan de lo normal. Un outliers es una observación de la serie que corresponde a un comportamiento anormal del fenómeno (sin incidencias futuras) o a un error de medición. Se debe determinar desde fuera si un punto dado es outlier o no. Si se concluye que lo es, se debe omitir o remplazar por otro valor antes de analizar la serie.

Por ejemplo, en un estudio de la producción diaria en una fabrica se presentó la siguiente situación ver figura 1.1:

Figura 1.1

Los dos puntos enmarcados en un círculo parecen corresponder a un comportamiento anormal de la serie. Al investigar estos dos puntos se vio que correspondían a dos días de paro, lo que naturalmente afectó la producción en esos días. El problema fue solucionado eliminando las observaciones e interpolando.

b) Permite detectar tendencia: la tendencia representa el comportamiento predominante de la serie. Esta puede ser definida vagamente como el cambio de la media a lo largo de un periodo (ver figura 1.2).

c) Variación estacional: la variación estacional representa un movimiento periódico de la serie de tiempo. La duración de la unidad del periodo es generalmente menor que un año. Puede ser un trimestre, un mes o un día, etc (ver figura 1.3).

Matemáticamente, podemos decir que la serie representa variación estacional si existe un número s tal que x(t) = x(t + ks).

Las principales

...

Descargar como (para miembros actualizados) txt (22 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com