ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Sucesiones


Enviado por   •  3 de Junio de 2015  •  416 Palabras (2 Páginas)  •  197 Visitas

Página 1 de 2

SUCESIÓN DE NUMEROS

Una sucesión es un conjunto de cosas (normalmente números) una detrás de otra, en un cierto orden.

Finita o infinita

Si la sucesión sigue para siempre, es una sucesión infinita,

si no es una sucesión finita

Ejemplos

{1, 2, 3, 4 ,...} es una sucesión muy simple (y es una sucesión infinita)

{20, 25, 30, 35, ...} también es una sucesión infinita

{1, 3, 5, 7} es la sucesión de los 4 primeros números impares (y es una sucesión infinita)

{4, 3, 2, 1} va de 4 a 1 hacia atrás

{1, 2, 4, 8, 16, 32, ...} es una sucesión infinita donde vamos doblando cada término

{a, b, c, d, e} es la sucesión de las 5 primeras letras en order alfabético

{a, l, f, r, e, d, o} es la sucesión de las letras en el nombre "alfredo"

{0, 1, 0, 1, 0, 1, ...} es la sucesión que alterna 0s y 1s (sí, siguen un orden, en este caso un orden alternativo)

En orden

Cuando decimos que los términos están "en orden", ¡nosotros somos los que decimos qué orden! Podría ser adelante, atrás... o alternando... ¡o el que quieras!

Una sucesión es muy parecida a un conjunto, pero con los términos en orden (y el mismo valor sí puede aparecer muchas veces).

Ejemplo: {0, 1, 0, 1, 0, 1, ...} es la sucesión que alterna 0s y 1s. El conjunto sería sólo {0,1}

La regla

Una sucesión sigue una regla que te dice cómo calcular el valor de cada término.

Ejemplo: la sucesión {3, 5, 7, 9, ...} empieza por 3 y salta 2 cada vez:

Tipos de sucesiones

Sucesiones aritméticas

El ejemplo que acabamos de usar, {3,5,7,9,...}, es una sucesión aritmética (o progresión aritmética), porque la diferencia entre un término y el siguiente es una constante.

Ejemplos

1, 4, 7, 10, 13, 16, 19, 22, 25, ...

Esta sucesión tiene una diferencia de 3 entre cada dos términos.

La regla es xn = 3n-2

3, 8, 13, 18, 23, 28, 33, 38, ...

Esta sucesión tiene una diferencia de 5 entre cada dos términos.

La regla es xn = 5n-2

Sucesiones geométricas

En una sucesión geométrica cada término se calcula multiplicando el anterior por un número fijo.

Ejemplos:

2, 4, 8, 16, 32, 64, 128, 256, ...

Esta sucesión tiene un factor 2 entre cada dos términos.

La regla es xn = 2n

3, 9, 27, 81, 243, 729, 2187, ...

Esta sucesión tiene un factor 3 entre cada dos términos.

La regla es xn = 3n

4, 2, 1, 0.5, 0.25, ...

Esta sucesión tiene un factor 0.5 (un medio) entre cada dos términos.

La regla es xn = 4 × 2-n

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com