TAREA arithmetic
Enviado por alejadrocas • 15 de Agosto de 2011 • 2.163 Palabras (9 Páginas) • 857 Visitas
1. Deduce the formula Sn = n (a1 +an) for an arithmetic sequence. 2
Solution:
Let S = 1 + 2 + ... + 99 + 100
Written another way:
S = 100 + 99 + ... + 2 + 1
Let a1 = 1, a2 = 2, ... , an-1 = 99, an = 100
Notice that 1 + 100 = 2 + 99 = ... = 100 + 1
We can conclude that:
a1 + an = a2 + an-1 = ... = an + a1
Let Sn = a1 + a2 + ... + an-1 + an
Sn can also be written as:
Sn = an + an-1 + ... + a2 + a1
When we add the two sums together:
Sn = a1 + a2 + ... + an-1 + an
+) Sn = an + an-1 + ... + a2 + a1__
2Sn = (a1 + an) + (a2 +an-1) + ... + (an-1 + a2) + (an + a1)
= (a1 + an) + (a1 + an) + ... + (a1 + an) + (a1 + an) a1 + an = a2 + an-1 = ... = an + a1
= n (a1 + an) n identical terms in the sum
2Sn = n (a1 +an)
Therefore:
Sn = n (a1 +an)
2
2. For an arithmetic sequence, a4 + an-3 = 8 and Sn = 32. Find n.
Solution:
From the previous question we know that:
a1 + an = a2 + an-1 = ... = an + a1
So if we extend the formula to:
a1 + an = a2 + an-1 = a3 + an-2 = a4 + an-3... = an + a1
Then:
a4 + an-3 = 8 = a1 + an
Sn = n (a1 +an) = 32
2
= n (a4 + an-3) = 32
2
= n (8) = 32
2
= 8n = 64
Therefore:
n = 8
3. If a1 + a2 + a3 = 5, an-2 + an-1 + an = 10 and Sn = 20, what is n?
Solution:
If we add the two equations together, we get:
a1 + a2 + a3 = 5
+) an-2 + an-1 + an = 10
a1 + an-2 + a2 + a n-1 + a3 + an = 15
(a1 + an) + (a2 + a n-1) + (a3 + a n-2) = 15
3 (a1 + an) = 15 a1 + an = a2 + an-1 = ... = an + a1
(a1 + an) = 5
Sn = n (a1 +an) = 20
2
= n (5) = 20
2
= 5n = 40
Therefore:
n = 8
4. Using the sequence 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 find the relationship between each pair of results.
I. 2 (7) and (5 + 9); 2(11) and (9 + 13); 2 (13) and (11 + 15)
II. 2 (7 + 9) and (3 + 5) + (11 + 13)
III. 2 (11 + 13 + 15) and (5 + 7 + 9) + (17 + 19 + 21)
For the general arithmetic sequence a1, a2, a3, ... an-1, an, state the general conclusions for I. II. and III.
Then summarize what you have found from I. II. and III.
Solution:
Let a1 = 3, a2 = 5, a3 = 7 ... a10 = 21
I. 2a3 = a2 + a4
2a5 = a4 + a6
2a6 = a5 + a7
So we get:
2an = an-1 + an+1
...