ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

TEÓRIA CONBINATORIA


Enviado por   •  7 de Noviembre de 2013  •  1.754 Palabras (8 Páginas)  •  270 Visitas

Página 1 de 8

¿Cómo se mide la probabilidad? REGLA DE LAPLACE.

Uno de los métodos más utilizados es aplicando la Regla de Laplace: define la probabilidad de un suceso como el cociente entre casos favorables y casos posibles.

P(A) = Casos favorables / casos posibles

Veamos algunos ejemplos:

a) Probabilidad de que al lanzar un dado salga el número 2: el caso favorable es tan sólo uno (que salga el dos), mientras que los casos posibles son seis (puede salir cualquier número del uno al seis). Por lo tanto:

P(A) = 1 / 6 = 0,166 (o lo que es lo mismo, 16,6%)

b) Probabilidad de que al lanzar un dado salga un número par: en este caso los casos favorables son tres (que salga el dos, el cuatro o el seis), mientras que los casos posibles siguen siendo seis. Por lo tanto:

P(A) = 3 / 6 = 0,50 (o lo que es lo mismo, 50%)

c) Probabilidad de que al lanzar un dado salga un número menor que 5: en este caso tenemos cuatro casos favorables (que salga el uno, el dos, el tres o el cuatro), frente a los seis casos posibles. Por lo tanto:

P(A) = 4 / 6 = 0,666 (o lo que es lo mismo, 66,6%)

d) Probabilidad de que nos toque el "Gordo" de Navidad: tan sólo un caso favorable, el número que jugamos (¡qué triste...¡), frente a 100.000 casos posibles. Por lo tanto:

P(A) = 1 / 100.000 = 0,00001 (o lo que es lo mismo, 0,001%)

Merece la pena ...... Por cierto, tiene la misma probabilidad el número 45.264, que el número 00001, pero ¿cuál de los dos comprarías?

Para poder aplicar la Regla de Laplace el experimento aleatorio tiene que cumplir dos requisitos:

a) El número de resultados posibles (sucesos) tiene que ser finito. Si hubiera infinitos resultados, al aplicar la regla "casos favorables / casos posibles" el cociente siempre sería cero.

b) Todos los sucesos tienen que tener la misma probabilidad. Si al lanzar un dado, algunas caras tuvieran mayor probabilidad de salir que otras, no podríamos aplicar esta regla.

A la regla de Laplace también se le denomina "probabilidad a priori", ya que para aplicarla hay que conocer antes de realizar el experimento cuales son los posibles resultados y saber que todos tienen las mismas probabilidades.

Combinaciones, Variaciones y Permutaciones (I)

Para aplicar la Regla de Laplace, el cálculo de los sucesos favorables y de los sucesos posibles a veces no plantea ningún problema, ya que son un número reducido y se pueden calcular con facilidad:

Por ejemplo: Probabilidad de que al lanzar un dado salga el número 2. Tan sólo hay un caso favorable, mientras que los casos posibles son seis.

Probabilidad de acertar al primer intento el horóscopo de una persona. Hay un caso favorable y 12 casos posibles.

Sin embargo, a veces calcular el número de casos favorables y casos posibles es complejo y hay que aplicar reglas matemáticas:

Por ejemplo: 5 matrimonios se sientan aleatoriamente a cenar y queremos calcular la probabilidad de que al menos los miembros de un matrimonio se sienten junto. En este caso, determinar el número de casos favorables y de casos posibles es complejo.

Las reglas matemáticas que nos pueden ayudar son el cálculo de combinaciones, el cálculo de variaciones y el cálculo de permutaciones.

a) Combinaciones:

Determina el número de subgrupos de 1, 2, 3, etc. elementos que se pueden formar con los "n" elementos de una nuestra. Cada subgrupo se diferencia del resto en los elementos que lo componen, sin que influya el orden.

Por ejemplo, calcular las posibles combinaciones de 2 elementos que se pueden formar con los números 1, 2 y 3.

Se pueden establecer 3 parejas diferentes: (1,2), (1,3) y (2,3). En el cálculo de combinaciones las parejas (1,2) y (2,1) se consideran idénticas, por lo que sólo se cuentan una vez.

b) Variaciones:

Calcula el número de subgrupos de 1, 2, 3, etc.elementos que se pueden establecer con los "n" elementos de una muestra. Cada subgrupo se diferencia del resto en los elementos que lo componen o en el orden de dichos elementos (es lo que le diferencia de las combinaciones).

Por ejemplo, calcular las posibles variaciones de 2 elementos que se pueden establecer con los número 1, 2 y 3.

Ahora tendríamos 6 posibles parejas: (1,2), (1,3), (2,1), (2,3), (3,1) y (3,3). En este caso los subgrupos (1,2) y (2,1) se consideran distintos.

c) Permutaciones:

Cálcula las posibles agrupaciones que se pueden establecer con todos los elementos de un grupo, por lo tanto, lo que diferencia a cada subgrupo del resto es el orden de los elementos.

Por ejemplo, calcular las posibles formas en que se pueden ordenar los número 1, 2 y 3.

Hay 6 posibles agrupaciones: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) y (3, 2, 1)

Combinaciones, Variaciones y Permutaciones (II)

¿Cómo se calculan?

a) Combinaciones:

Para calcular el número de combinaciones se aplica la siguiente fórmula:

El termino " n ! " se denomina "factorial de n" y es la multiplicación de todos los números que van desde "n" hasta 1.

Por ejemplo: 4 ! = 4 * 3 * 2 * 1 = 24

La expresión "Cm,n" representa las combinaciones de "m" elementos, formando subgrupos de "n" elementos.

Ejemplo: C10,4 son las combinaciones de 10 elementos agrupándolos en subgrupos de 4 elementos:

Es decir, podríamos formar 210 subgrupos diferentes de 4 elementos, a partir de los 10 elementos.

b) Variaciones:

Para calcular el número de variaciones se aplica la siguiente fórmula:

La expresión "Vm,n" representa las variaciones de "m" elementos, formando subgrupos de

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com