ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teorema De Bayes


Enviado por   •  30 de Octubre de 2012  •  1.047 Palabras (5 Páginas)  •  947 Visitas

Página 1 de 5

Probabilidad total. Teorema de Bayes

Ejemplos

El Teorema de Bayes viene a seguir el proceso inverso al que hemos visto en el Teorema de la probabilidad total:

Teorema de la probabilidad total: a partir de las probabilidades del suceso A (probabilidad de que llueva o de que haga buen tiempo) deducimos la probabilidad del suceso B (que ocurra un accidente).

Teorema de Bayes: a partir de que ha ocurrido el suceso B (ha ocurrido un accidente) deducimos las probabilidades del suceso A (¿estaba lloviendo o hacía buen tiempo?).

La fórmula del Teorema de Bayes es:

Tratar de explicar estar fórmula con palabras es un galimatías, así que vamos a intentar explicarla con un ejemplo. De todos modos, antes de entrar en el ejercicio, recordar que este teorema también exige que el suceso A forme un sistema completo.

Ejercicio 1º: El parte meteorológico ha anunciado tres posibilidades para el fin de semana:

a) Que llueva: probabilidad del 50%.

b) Que nieve: probabilidad del 30%

c) Que haya niebla: probabilidad del 20%.

Según estos posibles estados meteorológicos, la posibilidad de que ocurra un accidente es la siguiente:

a) Si llueve: probabilidad de accidente del 10%.

b) Si nieva: probabilidad de accidente del 20%

c) Si hay niebla: probabilidad de accidente del 5%.

Resulta que efectivamente ocurre un accidente y como no estabamos en la ciudad no sabemos que tiempo hizo (nevó, llovío o hubo niebla). El teorema de Bayes nos permite calcular estas probabilidades:

Las probabilidades que manejamos antes de conocer que ha ocurrido un accidente se denominan "probabilidades a priori" (lluvia con el 60%, nieve con el 30% y niebla con el 10%).

Una vez que incorporamos la información de que ha ocurrido un accidente, las probabilidades del suceso A cambian: son probabilidades condicionadas P (A/B), que se denominan "probabilidades a posteriori".

Vamos a aplicar la fórmula:

a) Probabilidad de que estuviera lloviendo:

La probabilidad de que efectivamente estuviera lloviendo el día del accidente (probabilidad a posteriori) es del 71,4%.

b) Probabilidad de que estuviera nevando:

La probabilidad de que estuviera nevando es del 21,4%.

c) Probabilidad de que hubiera niebla:

ESTADISTICA NO PARAMETRICA :La Estadística no paramétrica es una rama de la Estadística que estudia las pruebas y modelos estadísticos cuya distribución subyacente no se ajusta a los llamados criterios paramétricos. Su distribución no puede ser definida a priori, pues son los datos observados los que la determinan. La utilización de estos métodos se hace recomendable cuando no se puede asumir que los datos se ajusten a una distribución normal o cuando el nivel de medida empleado no sea, como mínimo, de intervalo. Las principales pruebas no paramétricas son las siguientes:

Prueba de chi-cuadrado

Prueba binomial

Prueba de Anderson-Darling

Prueba de Cochran

Prueba de Cohen kappa

Prueba de Fisher

Prueba de Friedman

Prueba de Kendall

Prueba de Kolmogorov-Smirnov

Prueba de Kruskal-Wallis

Prueba de Kuiper

Prueba de Mann-Whitney o prueba de Wilcoxon

Prueba de McNemar

Prueba de la mediana

Prueba de Siegel-Tukey

Coeficiente de correlación de Spearman

Tablas de contingencia

Prueba de Wald-Wolfowitz

Prueba de los

...

Descargar como (para miembros actualizados) txt (7 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com