Teorema de Límite Central “Valoración estadística en la investigación”
Enviado por kage98 • 24 de Enero de 2013 • Informe • 594 Palabras (3 Páginas) • 679 Visitas
Teorema de Límite Central
“Valoración estadística en la investigación”
Ignacio Méndez Ramírez
(de las páginas 31 a la 33)
Un estadístico (o estimador) es una variable
aleatoria cuyos valores pueden ser determinados a
partir de la observación de los datos aportados por
una muestra.
El conocer la distribución de probabilidad de los estadísticos, permite obtener conclusiones
a partir de una muestra hacia la población en general, proporcionar una medida del error
que se puede cometer en dichas conclusiones y también permite dar una medida de
confianza de que ese sea el error y no otro más grande.
Existe un teorema de mucha importancia práctica, que especifica la regularidad estadística
de los promedios (medias aritméticas) obtenidos de las mediciones numéricas en las
unidades experimentales analizadas en muestras de tamaño n. Es el teorema de límite
central, que dice:
En muestras de tamaño n, tomadas de una población en
la que la regularidad estadística no sigue una
distribución normal (puede ser de cualquier forma), que
tiene una media poblacional m y varianza poblacional s2
, entonces si n es grande, el proceso de tomar muchas
muestras y en cada una de ellas tomar su media, el
promedio muestral produce una regularidad estadística
de los valores de la media que se modela con la distribución normal con media m y varianza s2/ n (ver
Figura 1).
Se podría preguntar en el teorema ¿qué tan grande debe ser el tamaño n de la muestra ? La
respuesta es que depende del grado de alejamiento de la distribución de “muchas medias
muestrales”. Si el alejamiento es muy fuerte, distribuciones asimétricas con mayores
probabilidades en los extremos, o con varias modas, una tamaño de muestra de 30 o más ya
probabilidades en los extremos, o con varias modas, una tamaño de muestra de 30 o más ya
produce la distribución normal. Sin embargo, si la distribución de la población es normal
con muestras de tamaño 10 o más se tiene la normalidad. Si la distribución de población no
es normal, pero no se aleja mucho de ella, es simétrica o casi, con la media casi igual a la
moda y la mediana, entonces con muestras de tamaño 15 ó 20 dependiendo de que tan
cercana es la distribución de la población a la distribución normal.
Es importante recordar que no se puede decir que una variable dada o sus promedios siguen
estrictamente una distribución normal. Esta distribución es una idealización que no se da en
realidad, lo que importa es que la distribución real esté cercana a la normal y este supuesto
produzca conclusiones
...