Tipos de histograma
Enviado por tejamanil • 22 de Septiembre de 2011 • Trabajo • 635 Palabras (3 Páginas) • 1.015 Visitas
Tipos de histograma
Diagramas de barras simples
Representa la frecuencia simple (absoluta o relativa) mediante la altura de la barra la cual es proporcional a la frecuencia simple de la categoría que representa.
Diagramas de barras compuesta
Se usa para representar la información de una tabla de doble entrada o sea a partir de dos variables, las cuales se representan así; la altura de la barra representa la frecuencia simple de las modalidades o categorías de la variable y esta altura es proporcional a la frecuencia simple de cada modalidad.
Diagramas de barras agrupadas
Se usa para representar la información de una tabla de doble entrada o sea a partir de dos variables, el cual es representado mediante un conjunto de barras como se clasifican respecto a las diferentes modalidades.
Polígono de frecuencias
Es un gráfico de líneas que se las frecuencias absolutas de los valores de una distribución en el cual la altura del punto asociado a un valor de las variables es proporcional a la frecuencia de dicho valor.
Ojiva porcentual
Es un gráfico acumulativo, el cual es muy útil cuando se quiere representar el rango porcentual de cada valor en una distribución de frecuencias.
En los gráficos las barras se encuentran juntas y en la tabla los números poseen en el primer miembro un corchete y en el segundo un parentesis, por ejemplo: [10-20)
[editar] Construcción de un histogramaPaso 1
Determinar el rango de los datos. Rango es igual al dato mayor menos el dato menor.
Paso 2
Obtener los números de clases, existen varios criterios para determinar el número de clases (o barras) -por ejemplo la regla de Sturgess-. Sin embargo ninguno de ellos es exacto. Algunos autores recomiendan de cinco a quince clases, dependiendo de cómo estén los datos y cuántos sean. Un criterio usado frecuentemente es que el número de clases debe ser aproximadamente a la raíz cuadrada del número de datos. Por ejemplo, la raíz cuadrada de 30 ( número de artículos) es mayor que cinco, por lo que se seleccionan seis clases.
Paso 3
Establecer la longitud de clase: es igual al rango dividido por el número de clases.
Paso 4
Construir los intervalos de clases: Los intervalos resultan de dividir el rango de los datos en relación al resultado del PASO 2 en intervalos iguales.
Paso 5
Graficar el histograma: En caso de que las clases sean todas de la misma amplitud, se hace un gráfico de barras, las bases de las barras son los intervalos de clases y altura son la frecuencia de las clases. Si se unen los puntos medios de la base superior de los rectángulos se obtiene el polígono de frecuencias.
El histograma de una imagen representa la frecuencia relativa de los niveles de gris de
...