Trabajo Y Energia
Enviado por guidoguevara • 16 de Septiembre de 2012 • 2.537 Palabras (11 Páginas) • 489 Visitas
Desarrollo.
1.- Trabajo:
La palabra trabajo tiene diferentes significados en el lenguaje cotidiano, en física se le da un significado específico como el resultado de la acción que ejerce una fuerza para que un objeto se mueva en cierta distancia.
También se puede decir que el trabajo es el producto de una fuerza aplicada sobre un cuerpo y el desplazamiento de este cuerpo en dirección de la fuerza aplicada. Mientras se realiza un trabajo sobre el cuerpo, se produce una transformación de energía al mismo, por lo que puede decirse que el trabajo es “energía en movimiento”. Las unidades de trabajo son las mismas que las de energía.
Un ejemplo cotidiano de trabajo sería el levantar una caja desde el piso al borde de una mesa: se realiza una fuerza para vencer el peso de la caja y elevarla a una cierta altura para colocarla sobre la mesa.
Dentro del trabajo nos encontramos es trabajo realizado por una fuerza variable ó el trabajo realizado por una fuerza constante.
Nos referimos a una fuerza constante como aquella que no varía y el trabajo realizado por esta sería definida como el producto de una fuerza paralela al desplazamiento y la magnitud de este desplazamiento. Una forma de decirlo científicamente ó en formula sería: T = Fd * cos
Donde F es la fuerza aplicada que será constante, y D el desplazamiento de la partícula y el ángulo entre las direcciones de la fuerza y el desplazamiento.
F = 30 Nw.
En el caso de una fuerza variable el trabajo se puede calcular gráficamente, el procedimiento es parecido al calculo del desplazamiento cuando conocemos la velocidad en función del tiempo T. Para calcular el trabajo efectuado por una fuerza variable graficamos Fcos , que es la componente de la fuerza paralelo al desplazamiento horizontal de la partícula en cualquier punto, en función de una distancia D, dividimos la distancia en pequeños segmentos D. Para cada segmento se indica el promedio de Fcos mediante una línea horizontal de puntos. Entonces el trabajo seria: T = ( Fcos ) * ( D ), que seria el área del rectángulo de ancho D y altura Fcos , el trabajo total sería la suma de todos los T. Las unidades básicas de trabajo son el Joule y el Ergio.
Unidades mks cgs
Joule (j) New * m 10-7
Ergío 10-7 Dina * cm
Si tomamos en cuenta que T = F*D y tomando en cuenta la 2da ley de Newton que dice F = M*A se tendrá la formula T = M*A*D
2 . Energía Cinética:
La energía cinética es la energía que posee un cuerpo debido a su movimiento. La energía cinética depende de la masa y la velocidad del cuerpo según la siguiente ecuación: Ec = ½ M*V2
Donde m es la masa del cuerpo y V es la velocidad que tiene el cuerpo. Si tenemos la aceleración y la distancia recorrida por el cuerpo sabiendo que A = V/T obtenemos las siguiente formula Ec = M*A*D. Un ejemplo de energía cinética en la vida cotidiana seria el hecho de manejar un auto por una calle o el simple acto de caminar.
Por otra parte dentro de la energía cinética nos encontramos diferentes clases de energía cinética o relaciones entre la energía cinética o relaciones entre la energía cinética con otras clases de energías. Entre estas tenemos la relación entre trabajo y energía, la trasmisión de eneregia cinética en choques o colisiones y la relacion entre energía y la cantidad de movimiento.
Con respecto a la relacion entre trabajo y eneregia es por todos conocido que un cuerpo en movimiento realiza un trabajo y por lo tanto posee una energía, si el movimiemto realiza un trabajo y por lo tanto posee una energía, si el movimiento posee una rapidez variable, la energía del cuerpo tambien varia. Esta clase de energía que depende de la rapidez que posee en cuerpo se llama energía cinética.
Si tomamos en cuenta que t = M*A*D y sabiendo que la energía cinética es ec 0 M*A*D y observando esta similitud se obtiene que el trabajo realizado por un cuerpo es igual a ala energía cinética que tiene el mismo.
En el caso de la transmisión de energía cinética en colisiones o choques, sabemos que generalmente en una interacción entre dos o mas cuerpos, la energía cinética se trasforma en energía potencial, energía calórica o en algún proceso de deformación de los cuerpos que actúan en el proceso. Estas interacciones se caracterizan porque la energía cinética no se conserva se les llama interacciones inelásticas. En este caso la fuerza que se produce cuando los cuerpos se acercan es mayor a la fuerza que se produce cuando se alejan, esto hace que la velocidad que poseen los cuerpos disminuya después de la interacción de los mismos haciendo que la energía cinética disminuya.
En relación con la energía cinética y la cantidad de movimiento si en un sistema aislado formado por dos cuerpos de masas m1 y m2 , entre los cuales existe una interacción, la cantidad de movimiento se conserva, o sea que m1 v + m2 u = m1 v1 + m 2 v2 ; siendo v y u las velocidades respectivas antes de la interacción y v1 y u1 las velocidades después de la interacción.
3 . Teorema de Trabajo y Energía :
Luego de haber estudiado lo anterior tenemos una idea de la relación que existe entre el trabajo y la energía. Sabemos que el trabajo efectuado sobre un objeto es igual a su cambio de energía cinética.
Esta relación es llamada “El principio de trabajo y energía” que se podría explicar así :
“Cuando la velocidad de un cuerpo pasa de un valor a otro, la variación de la energía cinética que experimenta es igual al trabajo realizado por la fuerza neta que origina el cambio de velocidad”
Si tomamos en cuenta el planteamiento anterior tendremos que Ec = T, pero teniendo en cuenta que este trabajo es realizado por la fuerza neta del cuerpo, es decir por la sumatoria de las fuerzas que actúan sobre el cuerpo.
Veamos algunos ejemplos cotidianos de este teorema :
Cuando un carro acelera aumenta su rapidez y por lo tanto su energía cinética.
En forma detallada ocurre lo siguiente:
La explosión de gasolina por medio del motor y otros componentes originan una fuerza con la misma dirección y sentido del movimiento. Esta fuerza a lo largo de una realiza un trabajo mecánico que
...